Advertisement

DFT calculations of the structures, electronic and spectral properties for FenSm (2 ≤ n + m ≤ 5) clusters

  • Yuqi Chen
  • Hongyan WangEmail author
  • Xiumei Li
  • Tian Zhang
  • Hui Wang
Regular Article
  • 37 Downloads

Abstract

The geometric structures, electronic and magnetic properties of the FenSm (2 ≤ n + m ≤ 5) small clusters are investigated using the density functional theory (DFT) method. The relative stability and chemical activity are analyzed based on the averaged atomization energy (Ea), energy gap (Eg), vertical electron affinity (VEA) and vertical ionization potentials (VIP) for the most stable FenSm (2 ≤ n + m ≤ 5) clusters. Fe2S3 and Fe3S2 clusters are expected to have the highest and the lowest energy gaps, corresponding to the highest chemical stability and highest chemical activity, respectively. The total magnetic moments of FeSm (1 ≤ m ≤ 4) clusters are 4.0 μB, mainly attributed to Fe atoms except for FeS3. Meanwhile the infrared vibrational spectra and photoelectron spectra are simulated to identify FenSm (2 ≤ n + m ≤ 5) clusters.

Graphical abstract

Keywords

Clusters and Nanostructures 

References

  1. 1.
    P. Jena, J.A.W. Cattleman, Nanoclusters: A Bridge Across Disciplines (Elsevier, Oxford, 2010) Google Scholar
  2. 2.
    J. Zhao, X. Huang, P. Jin, Z. Chen, Coord. Chem. Rev. 289–290, 315 (2015) CrossRefGoogle Scholar
  3. 3.
    A. Lunghi, M. Iannuzzi, R. Sessoli, F. Totti, J. Mater. Chem. C 28, 7294 (2015) CrossRefGoogle Scholar
  4. 4.
    L.J.K. Cook, R. Mohammed, G. Sherborne, T.D. Roberts, S. Alvarez, M.A. Halcrow, Coord. Chem. Rev. 289–290, 2 (2015) CrossRefGoogle Scholar
  5. 5.
    J. Meyer, M. Tombers, C. van Wullen, G. Niedner-Schatteburg, S. Peredkov, W. Eberhardt, M. Neeb, S. Palutke, M. Martins, W. Wurth, J. Chem. Phys. 143, 104302 (2015) ADSCrossRefGoogle Scholar
  6. 6.
    H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B 25, 4412 (1982) ADSCrossRefGoogle Scholar
  7. 7.
    D.G. Leopold, W.C. Lineberger, J. Chem. Phys. 85, 51 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    R. Liyanage, J.B. Griffin, P.B. Armentrout, J. Chem. Phys. 119, 8979 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    E.K. Parks, B.H. Weiller, P.S. Bechthold, W.F. Hoffman, G.C. Nieman, L.G. Pobo, S.J. Riley, J. Chem. Phys. 88, 1622 (1988) ADSCrossRefGoogle Scholar
  10. 10.
    N. Zhang, T. Hayase, H. Kawamata, K. Nakao, A. Nakajima, K. Kaya, J. Chem. Phys. 104, 3413 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    H. Beinert, R.H. Holm, E. Münck, Science 277, 653 (1997) CrossRefGoogle Scholar
  12. 12.
    H. Beinert, FASEB J. 4, 2483 (1990) CrossRefGoogle Scholar
  13. 13.
    S. Yin, Z. Wang, E.R. Bernstein, Phys. Chem. Chem. Phys. 15, 4699 (2013) CrossRefGoogle Scholar
  14. 14.
    L.S. Wang, C.F. Ding, X.B. Wang, S.E. Barlow, Rev. Sci. Instr. 70, 1957 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    J.L. Chen, C.S. Wang, K.A. Jackson, M.R. Pederson, Phys. Rev. B 44, 6558 (1991) ADSCrossRefGoogle Scholar
  16. 16.
    X.G. Gong, Q.Q. Zheng, J. Phys.: Condens. Matter 7, 2421 (1995) ADSGoogle Scholar
  17. 17.
    Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Solid State Commun. 142, 114 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    K. Koszinowski, D. Schröder, H. Schwarz, Eur. J. Inorg. Chem. 2004, 44 (2004) CrossRefGoogle Scholar
  19. 19.
    D.H. Flint, R.M. Allen, Chem. Rev. 96, 2315 (1996) CrossRefGoogle Scholar
  20. 20.
    A. Lombardi, C.M. Summa, S. Geremia, L. Randaccio, V. Pavone, W.F. DeGrado, PNAS 97, 6298 (2000) ADSCrossRefGoogle Scholar
  21. 21.
    S. Inomata, H. Ogino, H. Tobita, Chem. Rev. 107, 2093 (1998) Google Scholar
  22. 22.
    A. Nakajima, T. Hayase, F. Hayakawa, K. Kaya, Chem. Phys. Lett. 280, 381 (1997) ADSCrossRefGoogle Scholar
  23. 23.
    N.S. Sickerman, M.W. Ribbe, Y. Hu, Acc. Chem. Res. 50, 2834 (2017) CrossRefGoogle Scholar
  24. 24.
    N.S. Sickerman, K. Tanifuji, Y. Hu, M.W. Ribbe, Chemistry 23, 12425 (2017) CrossRefGoogle Scholar
  25. 25.
    I. Djurdjevic, O. Einsle, L. Decamps, Chem. Asian J. 12, 1447 (2017) CrossRefGoogle Scholar
  26. 26.
    I. Coric, B.Q. Mercado, E. Bill, D.J. Vinyard, P.L. Holland, Nature 526, 96 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    C.J. Pollock, L.L. Tan, W. Zhang, K.M. Lancaster, S.C. Lee, S. DeBeer, Inorg. Chem. 53, 2591 (2014) CrossRefGoogle Scholar
  28. 28.
    O. Hübner, V. Termath, A. Berning, J. Sauer, Chem. Phys. Lett. 294, 37 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    M.N. Glukhovtsev, R.D. Bach, C.J. Nagel, J. Phys. Chem. A 101, 316 (1997) CrossRefGoogle Scholar
  30. 30.
    L. Lin, P. Claes, P. Gruene, G. Meijer, A. Fielicke, ChemPhysChem 11, 1932 (2010) Google Scholar
  31. 31.
    M. Iwamatsu, Y. Okabe, Chem. Phys. Lett. 399, 396 (2004) ADSCrossRefGoogle Scholar
  32. 32.
    H.G. Kim, S.K. Choi, H.M. Lee, J. Chem. Phys. 128, 144702 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101, 5111 (1997) CrossRefGoogle Scholar
  34. 34.
    B. Delley, J. Chem. Phys. 92, 508 (1990) ADSCrossRefGoogle Scholar
  35. 35.
    D.C. Ashley, E. Jakubikova, Inorg. Chem. 57, 5585 (2018) CrossRefGoogle Scholar
  36. 36.
    P.J. Hay, W.R. Wadt, J. Chem. Phys. 82, 270 (1985) ADSCrossRefGoogle Scholar
  37. 37.
    A. Aktürk, A. Sebetci, AIP Adv. 6, 055103 (2016) ADSCrossRefGoogle Scholar
  38. 38.
    G. Dong, L. Cao, U. Ryde, J. Biol. Inorg. Chem. 23, 221 (2018) CrossRefGoogle Scholar
  39. 39.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.2 (Gaussian, Inc., Wallingford, CT, 2009) Google Scholar
  40. 40.
    S.Y. Yan, Z.H. Zhu, Chin. Phys. 15, 1517 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    C. Angeli, R. Cimiraglia, Mol. Phys. 109, 1503 (2011) ADSCrossRefGoogle Scholar
  42. 42.
    K. Cervantes-Salguero, J.M. Seminario, J. Mol. Model. 18, 4043 (2012) CrossRefGoogle Scholar
  43. 43.
    M. Castro, D.R. Salahub, Phys. Rev. B 47, 10955 (1993) ADSCrossRefGoogle Scholar
  44. 44.
    E.P.P. Lenain, J.L. Lesne, J. Corset, J. Mol. Struct. 142, 355 (1986) ADSCrossRefGoogle Scholar
  45. 45.
    S. Millefiori, A. Alparone, J. Phys. Chem. A 105, 9489 (2001) CrossRefGoogle Scholar
  46. 46.
    H. Beinert, Eur. J. Biochem. 267, 5657 (2000) CrossRefGoogle Scholar
  47. 47.
    M.D. Chen, M.L. Liu, H.B. Luo, Q.E. Zhang, C.T. Au, J. Mol. Struct. (Theochem) 548, 133 (2001) CrossRefGoogle Scholar
  48. 48.
    M.D. Chen, M.L. Liu, H.B. Luo, Q.E. Zhang, C.T. Au, Chem. Phys. Lett. 350, 119 (2001) ADSCrossRefGoogle Scholar
  49. 49.
    A.J. Jackson, D. Tiana, A. Walsh, Chem. Sci. 7, 1082 (2016) CrossRefGoogle Scholar
  50. 50.
    H.J. Zhai, B. Kiran, L.S. Wang, J. Phys. Chem. A 107, 2821 (2003) CrossRefGoogle Scholar
  51. 51.
    J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu, Z.Q. Yang, J. Phys. Chem. A 110, 12005 (2006) CrossRefGoogle Scholar
  52. 52.
    E.M. Sosa-Hernández, J.M. Montejano-Carrizales, P.G. Alvarado-Leyva, Eur. Phys. J. D 71, 284 (2017) ADSCrossRefGoogle Scholar
  53. 53.
    Y.F. Li, X.Y. Kuang, S.J. Wang, Y. Li, Y.R. Zhao, Phys. Lett. A 375, 1877 (2011) ADSCrossRefGoogle Scholar
  54. 54.
    K.H. Park, K. Jang, S. Kim, H.J. Kim, S.U. Son, J. Am. Chem. Soc. 128, 14780 (2006) CrossRefGoogle Scholar
  55. 55.
    D. Die, B.X. Zheng, L.Q. Zhao, Q.W. Zhu, Z.Q. Zhao, Sci. Rep. 6, 31978 (2016) ADSCrossRefGoogle Scholar
  56. 56.
    A.G. Prieto, M.L. Fdez-Gubieda, J. Chaboy, M.A. Laguna-Marco, T. Muro, T. Nakamura, Phys. Rev. B 72, 212403 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuqi Chen
    • 1
  • Hongyan Wang
    • 1
    Email author
  • Xiumei Li
    • 1
  • Tian Zhang
    • 1
  • Hui Wang
    • 1
  1. 1.School of Physical Science and Technology, Southwest Jiaotong University, Key Laboratory of Advanced Technology of Materials (Ministry of Education)ChengduP.R. China

Personalised recommendations