Advertisement

Classical Trajectory Monte Carlo simulation of coincidence experiments in electron impact ionization of helium

  • Károly Tökési
  • Béla ParipásEmail author
  • Endre Kovács
Open Access
Regular Article
  • 50 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

The state-to-state (exchange) interference of the autoionizing resonances of helium is studied in (e,2e) experiments. These studies are disturbed by the coincidence events caused by the direct ionization, so their decrease is desirable. For this reason, to mimic the experimental observation, we performed four-body classical trajectory Monte Carlo calculations. The calculations were done for 93.15 eV primary energy, where the exchange interference of the 2s2(1S) and 2p2(1D) autoionizing states of helium is expected. The yields of non-coincidence and coincidence events detected in various combinations of scattering geometry were calculated and compared with the experimental observations.

Keywords

Topical issue 

References

  1. 1.
    J.P.V. den Brink, G. Nienhuis, J. van Eck, H.M. Heideman, J. Phys. B 22, 3501 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    R. Abrines, I.C. Percival, Proc. Phys. Soc. 88, 861 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    R.E. Olson, A. Salop, Phys. Rev. A 16, 531 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    K. Tökési, G. Hock, Nucl. Instrum. Methods Phys. Res. B 86, 201 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    D.R. Schultz, R.E. Olson, Phys. Rev. A 38, 1866 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    K. Tökési, Á. Kövér, J. Phys. B 33, 3067 (2000)CrossRefGoogle Scholar
  7. 7.
    D.R. Schultz, R.E. Olson, C.O. Reinhold, J. Phys. B 24, 521 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    R.A. Sparrow, R.E. Olson, J. Phys. B 27, 2647 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    K. Tökési, Á. Kövér, Nucl. Instrum. Methods Phys. Res. B 154, 259 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Tökési, R.D. DuBois, T. Mukoyama, Eur. Phys. J. D 68, 255 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    B. Paripás, B. Palásthy, G. Pszota, Eur. Phys. J. D 69, 34 (2014)CrossRefGoogle Scholar
  12. 12.
    B. Paripás, B. Palásthy, M. Béres, Nucl. Instrum. Methods Phys. Res. B 369, 34 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    B. Paripás, J.J. Jureta, B. Palásthy, B.P. Marinković, G. Pszota, J. Elect. Spectr. Relat. Phenom. 225, 10 (2018)CrossRefGoogle Scholar
  14. 14.
    K. Tökési, G. Hock, J. Phys. B 29, 119 (1996)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Károly Tökési
    • 1
    • 2
  • Béla Paripás
    • 3
    Email author
  • Endre Kovács
    • 3
  1. 1.Institute for Nuclear Research, Hungarian Academy of Sciences (Atomki)DebrecenHungary
  2. 2.ELI-ALPS, ELI-HU Non-profit Ltd.SzegedHungary
  3. 3.Institute of Physics, University of MiskolcMiskolc-EgyetemvárosHungary

Personalised recommendations