Power oscillations induced by the relative Goos-Hänchen phase

  • Manoel P. Araújo
  • Stefano De LeoEmail author
  • Gabriel G. Maia
  • Maurizio Martino
Regular Article


By using an optical interferometer composed of a dielectric laser ellipsometer, to change the optical response of transverse electric and magnetic incident radiation, and two polarisers, to trigger the interference pattern induced by the relative Goos-Hänchen phase, we show under which conditions it is possible to optimize the laser power oscillations induced by the relative phase difference between orthogonal polarised states. The Goos-Hänchen interference can then be used to sense rotation, to test optical components, and to simulate quarter and half wave plates.

Graphical abstract


Optical Phenomena and Photonics 


  1. 1.
    M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 1999)Google Scholar
  2. 2.
    B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley & Sons, New York, 2007)Google Scholar
  3. 3.
    D.J. Griffiths, Introduction to Elementary Particles (Wiley-Vch, New York, 2008)Google Scholar
  4. 4.
    M.C. Gonzalez-Garcia, Y. Nir, Rev. Mod. Phys. 75, 345 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    T. Young, Philos. Trans. R. Soc. London 92, 12 (1802)ADSCrossRefGoogle Scholar
  6. 6.
    P. Hariharan, Basics of Interferometry (Academic Press, 1992)Google Scholar
  7. 7.
    Y. Aharonov, D.Z. Albert, L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    I.M. Duck, P.M. Stevenson, Phys. Rev. D 40, 2112 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    M.P. Araújo, S. De Leo, G.G. Maia, J. Opt. 17, 035608 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    F. Goos, H. Hänchen, Ann. Phys. 436, 333 (1947)CrossRefGoogle Scholar
  11. 11.
    K. Artmann, Ann. Phys. 437, 87 (1948)CrossRefGoogle Scholar
  12. 12.
    F. Goos, H. Hänchen, Ann. Phys. 440, 251 (1949)CrossRefGoogle Scholar
  13. 13.
    G. Jayaswal, G. Mistura, M. Merano, Opt. Lett. 38, 1232 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    O. Santana, S. Carvalho, S. De Leo, L. de Araujo, Opt. Lett. 41, 3884 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    B.R. Horowitz, T. Tamir, J. Opt. Soc. Am. 61, 586 (1971)ADSCrossRefGoogle Scholar
  16. 16.
    C.C. Chan, T. Tamir, J. Opt. Soc. Am. A 4, 655 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    A. Aiello, New J. Phys. 14, 013058 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    K.Y. Bliokh, A. Aiello, J. Opt. 15, 014001 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    M.P. Araújo, S.A. Carvalho, S. De Leo, J. Mod. Opt. 60, 1772 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    M.P. Araújo, S.A. Carvalho, S. De Leo, Phys. Rev. A 90, 033844 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    M.P. Araújo, S.A. Carvalho, S. De Leo, J. Opt. 16, 015702 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    M.P. Araújo, S. De Leo, G.G. Maia, Phys. Rev. A 93, 023801 (2016)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Physics Gleb Wataghin, State University of CampinasCampinasBrazil
  2. 2.Department of Applied MathematicsState University of CampinasCampinasBrazil
  3. 3.Institute for Scientific and Industrial Research, University of OsakaOsakaJapan
  4. 4.Department of Mathematics and PhysicsUniversity of SalentoLecceItaly

Personalised recommendations