Advertisement

Ionization of guanine, adenine and thymine molecules by electron impact

  • Anna OstroverkhEmail author
  • Anatoly Zavilopulo
  • Otto Shpenik
Regular Article
  • 50 Downloads

Abstract

The method and results of the study of positive ions yield in the mass-spectrometric investigations by electron impact ionization of molecules of guanine, adenine and thymine are described. Mass spectrum obtained by electron impact has been measured in a crossed electron–molecule beam experiment ionization at the electron energy 70 eV. The ionization energy of the molecule and the appearance potential of some fragment ions were obtained. The mass spectra and fragmentation schemes of adenine and thymine molecules by electron impact were analyzed. The analysis of measured mass spectra is carried out, schemes of fragmentation of guanine, adenine and thymine molecules are proposed, which illustrate the most probable channels for the formation of ionic fragments in an electron impact, when the energy of the incident electrons is much higher than the ionization potential of the molecule. An explanation of the behaviours of the obtained temperature dependences of ions can be due to the difference in the character of the formation and fragmentation of the guanine, thymine and adenine molecules by electron impact.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    O.T. Avery, C.M. MacLeod, M. McCarty, J. Exp. Med. 79, 137 (1944) CrossRefGoogle Scholar
  2. 2.
    L. Billings et al., Astrobiology 6, 735 (2006) CrossRefGoogle Scholar
  3. 3.
    G. Steinman, R.M. Lemmon, M. Calvin, Proc. Natl. Acad. Sci. USA 52, 27 (1964) CrossRefGoogle Scholar
  4. 4.
    Y. Zheng, P. Coutier, D.J. Hunting, J.R. Wagner, L. Sanche, J. Am. Chem. Soc. 126, 1002 (2004) CrossRefGoogle Scholar
  5. 5.
    A. Kumar, M.D. Sevill, Chem. Phys. Chem. 10, 1426 (2009) CrossRefGoogle Scholar
  6. 6.
    C. von Sonntag, in The chemical basis of radiation biology (Taylor & Francis, London, Philadelphia, PA, 1989), p. 575 Google Scholar
  7. 7.
    A.V. Kukhta, I.N. Kukhta, A.N. Zavilopulo, A.S. Agafonova, O.B. Shpenik, Eur. J. Mass Spectr. 15, 563 (2009) CrossRefGoogle Scholar
  8. 8.
    A.N. Zavilopulo, E.A. Mironets, A.S. Agafonova, Instr. Exp. Tech. 55, 65 (2012) CrossRefGoogle Scholar
  9. 9.
    L.G. Christophorou, S.R. Hunter, in Electron-Molecule Interactions and Their Applications, edited by L.G. Christophorou (Academic Press, 1984), Vol. 2, p. 412 Google Scholar
  10. 10.
    P. Cicman, K. Gluch, A. Pelc, W. Sailer, S. Matt-Leubner, P. Scheier, S. Matejcik, P. Lukac, W.D. Robertson, R.N. Compton, T.D. Mark, J. Phys. Chem. 119, 11704 (2003) CrossRefGoogle Scholar
  11. 11.
    A.N. Zavilopulo, O.B. Shpenik, A.S. Agafonova, J. Phys. B: At. Mol. Opt. Phys. 42, 025101 (2009) CrossRefGoogle Scholar
  12. 12.
    D. Dougherty, E.S. Younathan, R. Voll, S. Abdulnur, S.P. McGlynn, J. Electr. Spectr. Relat. Phenom. 13, 379 (1978) CrossRefGoogle Scholar
  13. 13.
    J. Lin, C. Yu, S. Peng, I. Aklyama, K. Li, L.I. Kao Lee, P.R. LeBreton, J. Phys. Chem. 84, 1006 (1980) CrossRefGoogle Scholar
  14. 14.
    O. Dolgounitcheva, V.G. Zakrzewski, J.V. Ortiz, J. Am. Chem. Soc. 122, 12304 (2000) CrossRefGoogle Scholar
  15. 15.
    H.-W. Jochims, M. Schwell, J.-L. Chotin, M. Clemino, F. Dulieu, H. Baumgartel, S.J. Leach, J. Chem. Phys. 298, 279 (2004) Google Scholar
  16. 16.
    H.-W. Jochims, M. Schwell, H. Baumgartel, S. Leach, J. Chem. Phys. 314, 263 (2005) Google Scholar
  17. 17.
    P.J.M. van der Burgt, S. Finnegan, S. Eden, Eur. Phys. J. D 69, 173 (2015) CrossRefGoogle Scholar
  18. 18.
    S.K. Satinder, S.P. Gupta, E.E. Jenkins, C.W. Whitehead, L.B. Townsend, J.A. McCloskey, J. Am. Chem. Soc. 104, 3349 (1982) CrossRefGoogle Scholar
  19. 19.
    L. Belau, K.R. Wilson, S.R. Leone, M. Ahmed, J. Phys. Chem. A 111, 7562 (2007) CrossRefGoogle Scholar
  20. 20.
    M.Y. Choi, R.E. Miller, J. Am. Chem. Soc. 128, 7320 (2006) CrossRefGoogle Scholar
  21. 21.
    A.N. Zavilopulo, O.B. Shpenik, P.P. Markush, E.E. Kontrosh, Technol. Phys. 60, 957 (2015) CrossRefGoogle Scholar
  22. 22.
    I. Chernyshova, P. Markush, A. Zavilopulo, O. Shpenik, Eur. Phys. J. D 69, 80 (2015) CrossRefGoogle Scholar
  23. 23.
    O.B. Shpenik, A.N. Zavilopulo, A.S. Agafonova, L.G. Romanova Dopovidi, Nat. Akad. Nauk Ukr. 5, 97 (2008) Google Scholar
  24. 24.
    A.N. Zavilopulo, A.S. Agafonova, A.V. Snegurskii, Technol. Phys. 55, 1735 (2010) Google Scholar
  25. 25.
    J.M. Peter van der Burgt, F. Mahon, G. Barrett, M.L. Gradziel, Eur. Phys. J. D 68, 151 (2014) CrossRefGoogle Scholar
  26. 26.
    P. Mozejko, L. Sanche, Radiat. Environ. Biophys. 42, 201 (2003) CrossRefGoogle Scholar
  27. 27.
    V.M. Orlov, A.M. Smirnov, Y.M. Varshavsky, Tetrahedron Lett. 48, 4377 (1976) CrossRefGoogle Scholar
  28. 28.
    C.T. Hwang, C.L. Stumpf, Y.-Q. Yu, H.I. Kenttdmaa, Int. J. Mass. Spectr. 182/183, 253 (1999) CrossRefGoogle Scholar
  29. 29.
    B.I. Verkin, L.F. Sukodub, I.K. Yanson, Dokl. Akad. Nauk SSSR 228, 1452 (1976) Google Scholar
  30. 30.
    N.S. Hush, A.S. Cheung, Chem. Phys. Lett. 34, 11 (1975) CrossRefGoogle Scholar
  31. 31.
    P.H. Bernhardt, H.G. Paretzke, Int. J. Mass Spectr. 223/224, 599 (2003) CrossRefGoogle Scholar
  32. 32.
    S.D. Wetmore, R.J. Boyd, L.A. Eriksson, Chem. Phys. Lett. 322, 129 (2000) CrossRefGoogle Scholar
  33. 33.
    W.M. Huo, C.E. Dateo, G.D. Fletcher, Radiat. Meas. 41, 1202 (2006) CrossRefGoogle Scholar
  34. 34.
    S.K. Kim, W. Lee, D.R. Herschbach, J. Phys. Chem. 100, 7933 (1996) CrossRefGoogle Scholar
  35. 35.
    C.A. Bauer, S. Grimme, Eur. J. Mass Spectr. 21, 125 (2015) CrossRefGoogle Scholar
  36. 36.
    L. Sadr-Arani, P. Mignon, H. Chermette, H. Abdoul-Carime, B. Farizonb, M. Farizonb, Phys. Chem. Chem. Phys. 17, 11115 (2015) CrossRefGoogle Scholar
  37. 37.
    D. Roca-Sanjuán, M. Rubio, M. Merchán, L. Serrano-Andrésa, J. Chem. Phys. 125, 084302 (2006) CrossRefGoogle Scholar
  38. 38.
    B.F. Minaev, M.I. Shafranyosh, Y.Y. Svida, M.I. Sukhoviya, I.I. Shafranyosh, G.V. Baryshnikov, V.A. Minaeva, J. Chem. Phys. 140, 175101 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frantcevych Institute for Problems of Materials Science, National Academy of Science of UkraineKyivUkraine
  2. 2.Institute of Electron Physics, National Academy of Science of UkraineUzhhorodUkraine

Personalised recommendations