Advertisement

Inner-valence Auger decay in hydrocarbon molecules

  • Guoke Zhao
  • Tsveta Miteva
  • Nicolas SisouratEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)

Abstract

We have theoretically studied the Auger effect after inner-valence ionization of several unsaturated and saturated cyclic and linear hydrocarbon molecules. These prototype molecules were chosen such that the effects of the different characteristics of aromaticity (π electrons, conjugation, cyclic geometry) on the Auger decay can be investigated separately. We show that among these molecules, the ones having π electrons can undergo Auger decay after inner-valence ionization. Furthermore, the results reported here suggest that conjugation allows for several open Auger decay channels while aromaticity limits the range of the latter.

References

  1. 1.
    R.D. Molloy, J.H. Eland, Chem. Phys. Lett. 421, 31 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J.H. Eland, Chem. Phys. 345, 82 (2008)CrossRefGoogle Scholar
  3. 3.
    F. Tarantelli, A. Sgamellotti, L.S. Cederbaum, J. Schirmer, J. Chem. Phys. 86, 2201 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    W. Griffiths, M. Langford, F. Harris, J. Am. Soc. Mass Spectrom. 4, 513 (1993)CrossRefGoogle Scholar
  5. 5.
    P. Baltzer, L. Karlsson, B. Wannberg, G. Öhrwall, D. Holland, M. MacDonald, M. Hayes, W. von Niessen, Chem. Phys. 224, 95 (1997)CrossRefGoogle Scholar
  6. 6.
    A.J. Yencha, R.I. Hall, L. Avaldi, G. Dawber, A.G. McConkey, M.A. MacDonald, G.C. King, Can. J. Chem. 82, 1061 (2004)CrossRefGoogle Scholar
  7. 7.
    C. Villani, F. Tarantelli, J. Chem. Phys. 120, 1775 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M. Schwell, H.-W. Jochims, H. Baumgärtel, S. Leach, Chem. Phys. 353, 145 (2008)CrossRefGoogle Scholar
  9. 9.
    D. Ascenzi, J. Aysina, E.-L. Zins, D. Schroder, J. Zabka, C. Alcaraz, S.D. Price, J. Roithova, Phys. Chem. Chem. Phys. 13, 18330 (2011)CrossRefGoogle Scholar
  10. 10.
    A.M. Śmiałek, A.M. MacDonald, S. Ptasińska, L. Zuin, J.N. Mason, Eur. Phys. J. D 70, 42 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    J. Eland, R. Feifel, Double Photoionisation Spectra of Molecules (Oxford University Press, Oxford, 2017)Google Scholar
  12. 12.
    J. Palaudoux, S. Sheinerman, J. Soronen, S.-M. Huttula, M. Huttula, K. Jänkälä, L. Andric, K. Ito, P. Lablanquie, F. Penent, J.-M. Bizau, S. Guilbaud, D. Cubaynes, Phys. Rev. A 92, 012510 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kitajima, H. Yoshida, A.D. Fanis, G. Prümper, U. Hergenhahn, E. Kukk, T. Tanaka, K. Nakagawa, H. Tanaka, S. Fritzsche, I.P. Sazhina, N.M. Kabachnik, K. Ueda, J. Phys. B 39, 1299 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    R. Feifel, J.H.D. Eland, R.J. Squibb, M. Mucke, S. Zagorodskikh, P. Linusson, F. Tarantelli, P.C.V. Kolorenč, V. Averbukh, Phys. Rev. Lett. 116, 073001 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, Wiley Interdisciplinary Rev.: Comput. Molecular Sci. 2, 242 (2012)Google Scholar
  16. 16.
    H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, D.P. O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, Molpro, Version 2015.1, A Package of ab initio Programs (2015)Google Scholar
  17. 17.
    D. Danovich, Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 1, 377 (2011)Google Scholar
  18. 18.
    J. Schirmer, A.B. Trofimov, G. Stelter, J. Chem. Phys. 109, 4734 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    A.B. Trofimov, J. Schirmer, J. Chem. Phys. 123, 144115 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    J. Schirmer, A. Barth, Z. Phys. A 317, 267 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    F. Tarantelli, Chem. Phys. 329, 11 (2006)CrossRefGoogle Scholar
  22. 22.
    Y. Velkov, T. Miteva, N. Sisourat, J. Schirmer, J. Chem. Phys. 135, 154113 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72, 650 (1980)ADSCrossRefGoogle Scholar
  24. 24.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  25. 25.
    H. Ågren, J. Chem. Phys. 75, 1267 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Roberts, A. Streitwieser Jr., C.M. Regan, J. Am. Chem. Soc. 74, 4579 (1952)CrossRefGoogle Scholar
  27. 27.
    H.-G. Weikert, L. Cederbaum, Chem. Phys. Lett. 237, 1 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    V. Despré, A. Marciniak, V. Loriot, M.C.E. Galbraith, A. Rouze, M.J.J. Vrakking, F. Lépine, A.I. Kuleff, J. Phys. Chem. Lett. 6, 426 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Lias, in Ionization Energy Evaluation (NIST Chemistry WebBook, NIST Standard Reference Database Number 69), edited by P.J. Linstrom, W.G. Mallard, (National Institute of Standards and Technology, Gaithersburg, MD, 2016), p. 20899Google Scholar
  30. 30.
    M. Allan, J. Dannacher, J.P. Maier, J. Chem. Phys. 73, 3114 (1980)ADSCrossRefGoogle Scholar
  31. 31.
    P. Wolkoffs, J.L. Holmes, F.P. Lossing, Can. J. Chem. 58, 251 (1980)CrossRefGoogle Scholar
  32. 32.
    C.-M. Liegener, A. Naves de Brito, H. Ågren, N. Correia, W.J. Griffiths, S. Svensson, F.M. Harris, Phys. Rev. B 46, 11295 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    F. Penent, J. Palaudoux, P. Lablanquie, L. Andric, R. Feifel, J.H.D. Eland, Phys. Rev. Lett. 95, 083002 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    V. Ulrich, S. Barth, T. Lischke, S. Joshi, T. Arion, M. Mucke, M. Förstel, A.M. Bradshaw, U. Hergenhahn, J. Electron. Spectros. Relat. Phenomena 183, 70 (2011)CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua UniversityBeijingP.R. China
  2. 2.Sorbonne Université, CNRS, Laboratoire de Chimie Physique Matière et Rayonnement, UMR 7614ParisFrance

Personalised recommendations