Advertisement

Plasma potential probes for hot plasmas

A review and some news
  • Codrina Ionita
  • Bernd Sebastian Schneider
  • Stefan Costea
  • Ovidiu Vasilovici
  • Jernej Kovačič
  • Tomaz Gyergyek
  • Volker Naulin
  • Jens Juul Rasmussen
  • Nicola Vianello
  • Monica Spolaore
  • Ronald Stärz
  • Roman SchrittwieserEmail author
Open Access
Topical Review
  • 62 Downloads

Abstract

Plasma probes are well established diagnostic tools. They are not complicated, relatively easy to construct and to handle. The easiest and fastest accessible parameter is their floating potential. However, the floating potential of a cold probe is not very significant. Much more important and relevant is the plasma potential. But in most types of plasmas, consisting mainly of electrons and only positive ions, the floating potential is more negative than the plasma potential by a factor proportional to the electron temperature. Obviously this is due to the much higher mobility of the electrons. We present a review on probes whose floating potential is close to or ideally equal to the plasma potential. Such probes we name Plasma Potential Probes (PPP) and they can either be Electron Emissive Probes (EEP) or so-called Electron Screening Probes (EPS). These probes make it possible to measure the plasma potential directly and thus with high temporal resolution. An EEP compensates the plasma electron current by an electron emission current from the probe into the plasma, thereby rendering the current-voltage characteristic symmetric with respect to the plasma potential and shifting the floating potential towards the plasma potential. Only the simplest case of an EEP floating exactly on the plasma potential is discussed here in which case no sheath is present around the probe. An ESP, principally operable only in strong magnetic fields, screens off most of the plasma electron current from the probe collector, taking advantage of the fact that the gyro radius of electrons is usually much smaller than that of the ions. Also in this case we obtain a symmetric current-voltage characteristic and a shift of the probe’s floating potential towards the plasma potential. We have developed strong and robust EEPs and two types of ESPs, called BUnker Probes (BUP), for the use in the Scrape-Off Layer (SOL) of Medium-Size Tokamaks (MST), and other types of strongly magnetized hot plasmas. These probes are presented in detail.

Keywords

Plasma Physics 

Notes

Acknowledgments

Open access funding provided by University of Innsbruck and Medical University of Innsbruck.

References

  1. 1.
    W. Crookes, Radiant matter: A Resume of the principal lectures and papers of Prof. William Crookes on the fourth state of matter (James W. Queen & Co, Philadelphia, PA, USA, 1881)Google Scholar
  2. 2.
  3. 3.
    I. Langmuir, J. Franklin Inst. CXCVI, 1 (1923)Google Scholar
  4. 4.
    I. Langmuir, in The Collected Works of Irving Langmuir, edited by C. Guy Suits (Pergamon Press, 1961), Vol. 5, pp. 1–10.Google Scholar
  5. 5.
    I. Langmuir, Phys. Rev. 33, 954 (1929) ADSCrossRefGoogle Scholar
  6. 6.
    J. Stark, T. Retschinsky, Ann. Phys. 323, 213 (1905)CrossRefGoogle Scholar
  7. 7.
    C. Ionita, V. Naulin, F. Mehlmann, J.J. Rasmussen, H.W. Müller, R. Schrittwieser, V. Rohde, A.H. Nielsen, Ch. Maszl, P. Balan, A. Herrmann, Nucl. Fusion 53, 043021 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    F.F. Chen, Electric probes in Plasma Diagnostic, edited by R.H. Huddlestone, S.L. Leonard(Academic Press, New York, London, 1965), Chap. 4, pp. 113–200Google Scholar
  9. 9.
    L. Schott, Electric probes, in Plasma Diagnostic, edited by W. Lochte-Holtgreven (Publishing Company, Amsterdam, 1968), Chap. 11, p. 668–731.Google Scholar
  10. 10.
    I.H. Hutchinson, in Principles of Plasma Diagnostics, Second Edn (Cambridge University Press, 2002), pp. 55–103Google Scholar
  11. 11.
    N. Hershkowitz, How Langmuir probes work, in Plasma Diagnostics, (Discharge Parameters and Chemistry), edited by O. Auciello, D.L. Flamm (Academic Press, 1989), Chap. 3, pp. 113–183Google Scholar
  12. 12.
  13. 13.
    D. Bohm, in: The characteristics of electric discharges in magnetic, edited by A. Guthry, R.K. Wakerlind(MacGraw-Hill, New York, 1949), Chap. 3, p. 77Google Scholar
  14. 14.
    J.E. Allen, J. Phys. D: Appl. Phys 9, 2331 (1976) ADSCrossRefGoogle Scholar
  15. 15.
    K.-U. Riemann, J. Phys. D: Appl. Phys 24, 493 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    C. Charles, Plasma Sources Sci. Technol. 16, R1 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    R. Schrittwieser, in Fourth Symposium on Double Layers and Other Nonlinear Potential Structures in Plasmas Innsbruck, Austria, July 6–8, 1992 (Proceeding, World Scientific Publishing Company, Singapore, 1992) P. 498Google Scholar
  18. 18.
    H.W. Müller, J. Adamek, J. Horacek, C. Ionita, F. Mehlmann, V. Rohde, R. Schrittwieser, Contrib. Plasma Phys. 50, 847 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Ionita, J. Grünwald, Ch Maszl, R. Stärz, M. Čerček, B. Fonda, T. Gyergyek, G. Filipič, J. Kovačič, C. Silva, H. Figueiredo, T. Windisch, O. Grulke, T. Klinger, R. Schrittwieser, Contrib. Plasma Phys. 51, 264 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. Dushman, Phys. Rev. 21, 623 (1923)ADSCrossRefGoogle Scholar
  21. 21.
    S. Iizuka, P. Michelsen, J.J. Rasmussen, R. Schrittwieser, R. Hatakeyama, K. Saeki, N. Sato, J. Phys. E: Sci. Instrum. 14, 1291 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    R.W. Schrittwieser, C. Ionita, C.T. Teodorescu-Soare, O. Vasilovici, S. Gurlui, S.A. Irimiciuc, D.G. Dimitriu, Phys. Scr. 92, 044001 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    B.S. Schneider, S. Costea, C. Ionita, R. Schrittwieser, V. Naulin, J.J. Rasmussen, R. Stärz, N. Vianello, J. Kovacic, T. Gyergyek, Proc. Science, electronic version, http://pos.sissa.it/archive/conferences/240/072/ECPD2015_072.pdf (2015)
  24. 24.
    B.S. Schneider, S. Costea, C. Ionita, O. Vasilovici, R. Stärz, J. Kovačič, T. Gyergyek, V. Naulin, J.J. Rasmussen, N. Vianello, M. Spolaore, R. Schrittwieser, Rev. Sci. Instrum. (2018), in preparationGoogle Scholar
  25. 25.
    J. Adámek, J. Stöckel, M. Hron, J. Ryszawy, M. Tichý, R. Schrittwieser, C. Ionita, P. Balan, E. Martines, G. Van Oost, Czech. J. Phys. 54, C95 (2004)CrossRefGoogle Scholar
  26. 26.
    J. Adámek, J. Stöckel, I. Ďuran, M. Hron, R. Pánek, M. Tichý, R. Schrittwieser, C. Ionita, P. Balan, E. Martines, G. Van Oost, Czech. J. Phys. 55, 235 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    R. Schrittwieser, C. Ionita, J. Adámek, J. Brotánková, J. Stöckel, E. Martines, C. Costin, G. Popa, L. van de Peppel, G. Van Oost, Czech. J. Phys. 56, B145 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Costea, B. Fonda, J. Kovacic, T. Gyergyek, B. Schneider, R. Schrittwieser, C. Ionita, Rev. Sci. Instrum. 87, 053510 (2016)CrossRefGoogle Scholar
  29. 29.
    I. Katsumata, M. Okazaki, Jpn. J. Appl. Phys. 6, 123 (1967)ADSCrossRefGoogle Scholar
  30. 30.
    I. Katsumata, Contrib. Plasma Phys. 36, 73 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    N. Rynn, N. D’Angelo, Rev. Sci. Instrum. 31, 1326 (1960)ADSCrossRefGoogle Scholar
  32. 32.
    R.W. Motley, Q-Machines (Academic Press, 1975)Google Scholar
  33. 33.
    A. Marek, I. Picková, P. Kudrna, M. Tichý, R.P. Apetrei, S.B. Olenici, R. Gstrein, R. Schrittwieser, C. Ionita, Czech. J. Phys. 56, B932 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Marek, M. Jilek, I. Pickova, P. Kudrna, M. Tichy, R. Schrittwieser, C. Ionita, Contrib. Plasma Phys. 48, 491 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    R. Schrittwieser, J. Adámek, P. Balan, M. Hron, C. Ionita, K. Jakubka, L. Kryška, E. Martines, J. Stöckel, M. Tichý, G. Van Oost, Plasma Phys. Contr. Fusion 44, 567 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    R. Schrittwieser, C. Ionita, P. Balan, R. Gstrein, O. Grulke, T. Windisch, C. Brandt, T. Klinger, R. Madani, G. Amarandei, A. Sarma, Rev. Sci. Instrum. 79, 083508 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    J.M. Sellen Jr, W. Bernstein, R.F. Kellen, Rev. Sci. Instrum. 36, 316 (1965)ADSCrossRefGoogle Scholar
  38. 38.
    R.F. Kemp, J.M. Sellen Jr, Rev. Sci. Instrum. 37, 455 (1966)ADSCrossRefGoogle Scholar
  39. 39.
    J.R. Smith, N. Hershkowitz, P. Coakley, Rev. Sci. Instrum. 50, 210 (1979)ADSCrossRefGoogle Scholar
  40. 40.
    M.H. Cho, C. Chan, N. Hershkowitz, T. Intrator, Rev. Sci. Instrum. 55, 631 (1984)ADSCrossRefGoogle Scholar
  41. 41.
    E.Y. Wang, T. Intrator, N. Hershkowitz, Rev. Sci. Instrum. 56, 519 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    E.Y. Wang, N. Hershkowitz, T. Intrator, C. Forest, Rev. Sci. Instrum. 57, 2425 (1986)ADSCrossRefGoogle Scholar
  43. 43.
    D. Diebold, N. Hershkowitz, A.D. Bailey III, M.H. Cho, T. Intrator, Rev. Sci. Instrum. 59, 270 (1988)ADSCrossRefGoogle Scholar
  44. 44.
    N. Hershkowitz, M.H. Cho, J. Vac. Sci. Technol. A 6, 2054 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    T. Lho, N. Hershkowitz, G.-H. Kim, Rev. Sci. Instrum. 71, 403 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    J.P. Sheehan, N. Hershkowitz, Plasma Sources Sci. Technol. 20, 063001 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    L. Oksuz, N. Hershkowitz, Phys. Rev. Lett. 89, 145001 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    E.H. Wilson, J. Jeong, N. Hershkowitz, Rev. Sci. Instrum. 73, 2033 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    S. Yan, H. Kamal, J. Amundson, N. Hershkowitz, Rev. Sci. Instrum. 67, 4130 (1996)ADSCrossRefGoogle Scholar
  50. 50.
    J.P. Sheehan, Y. Raitses, N. Hershkowitz, M. McDonald, J. Propul. Power 33, 614 (2017)CrossRefGoogle Scholar
  51. 51.
    P. Balan, J.A. Cabral, R. Schrittwieser, H.F.C. Figueiredo, H. Fernandes, C. Ionitǎ, C. Varandas, J. Adámek, M. Hron, J. Stöckel, E. Martines, M. Tichý, G. Van Oost, Rev. Sci. Instrum. 74, 1583 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    C. Ioniǎ, P. Balan, R. Schrittwieser, H.F.C. Figueiredo, R.M.O. Galvão, C. Silva, C.A.F. Varandas, Rev. Sci. Instrum. 75, 4331 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    K. Hirao, K. Oyama, J. Geomagn. Geoelectr. 23, 47 (1971)ADSCrossRefGoogle Scholar
  54. 54.
    R.W. Motley, J. Appl. Phys. 43, 3711 (1972)ADSCrossRefGoogle Scholar
  55. 55.
    J.J. Schuss, R.R. Parker, J. Appl. Phys. 45, 4778 (1974) ADSCrossRefGoogle Scholar
  56. 56.
    R.L. Merlino, S.L. Cartier, J. Phys. D: Appl. Phys. 20, 1074 (1987)ADSCrossRefGoogle Scholar
  57. 57.
    A. Siebenförcher, R. Schrittwieser, Rev. Sci. Instrum. 67, 849 (1996)ADSCrossRefGoogle Scholar
  58. 58.
    K. Reinmüller, Contrib. Plasma Phys. 38, 7 (1998)CrossRefADSGoogle Scholar
  59. 59.
    S. Takamura, M.Y. Ye, T. Kuwabara, N. Ohno, Phys. Plasmas 5, 2151 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    M.Y. Ye, S. Takamura, Phys. Plasmas 7, 3457 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    R. Schrittwieser, C. Ionitǎ, P.C. Balan, J.A. Cabral, H.F.C. Figueiredo, V. Pohoatǎ, C. Varandas, Contrib. Plasma Phys. 41, 494 (2001)ADSCrossRefGoogle Scholar
  62. 62.
    V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002)ADSCrossRefGoogle Scholar
  63. 63.
    A. Matsubara, T. Sugimoto, T. Shibuya, K. Kawamura, S. Sudo, K. Sato, J. Nucl. Mat. 313–316, 720 (2003) CrossRefADSGoogle Scholar
  64. 64.
    H. Himura, M. Fukao, H. Wakabayashi, Z. Yoshida, Rev. Sci. Instrum. 74, 4658 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    S. Takamura, N. Ohno, M.Y. Ye, T. Kuwabara, Contrib. Plasma Phys. 44, 126 (2004)ADSCrossRefGoogle Scholar
  66. 66.
    K.S. Chung, G.Y. Kwak, Y.S. Choi, M.J. Lee, J.G. Bak, M. Kwon, Rev. Sci. Instrum. 72, 4299 (2004) ADSCrossRefGoogle Scholar
  67. 67.
    N. Mahdizadeh, F. Greiner, M. Ramisch, U. Stroth, W. Guttenfelder, C. Lechte, K. Rahbarnia, Plasma Phys. Contr. Fusion 47, 569 (2005)ADSCrossRefGoogle Scholar
  68. 68.
    R. McWilliams, D. Edrich, Contrib. Plasma Phys. 46, 411 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    R. Schrittwieser, A. Sarma, G. Amarandei, C. Ionita, T. Klinger, O. Grulke, A. Vogelsang, T. Windisch, Phys. Scr. T123, 94 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    K. Kusaba, H. Shindo, Rev. Sci. Instrum. 78, 123503 (2007)ADSCrossRefGoogle Scholar
  71. 71.
    T. Gyergyek, M. Cercek, Eur. Phys. J. D 42, 441 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    R. Schrittwieser, C. Ionita, P. Balan, C. Silva, H. Figueiredo, C.A.F. Varandas, J. Juul Rasmussen, V. Naulin, Plasma Phys. Control. Fusion 50, 055004 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    C. Ionita, P. Balan, T. Windisch, C. Brandt, O. Grulke, T. Klinger, R. Schrittwieser, Contrib. Plasma Phys. 48, 453 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    R.W. Schrittwieser, R. Stärz, C. Ionita, R. Gstrein, T. Windisch, O. Grulke, T. Klinger, J. Plasma Fusion Res. Ser. 8, 632 (2009)Google Scholar
  75. 75.
    R. Schrittwieser, C. Ionita, K. Rahbarnia, J. Gruenwald, T. Windisch, R. Stärz, O. Grulke, T. Klinger, Contrib. Plasma Phys. 53, 92 (2013)ADSCrossRefGoogle Scholar
  76. 76.
    A. Fruchtman, D. Zoler, G. Makrinich, Phys. Rev. E 84, 025402(R) (2011)ADSCrossRefGoogle Scholar
  77. 77.
    X. Chen, G. Sanchez-Arriaga, Phys. Plasmas 24, 023504 (2017)ADSCrossRefGoogle Scholar
  78. 78.
    G.L. Delzanno, X.-Z. Tang, Phys. Rev. Lett. 113, 035002 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    B. Lipschultz, D.A. Pappas, B. LaBombard, J.E. Rice, D. Smith, S.J. Wukitch, Nucl. Fusion 41 (2001) 585.ADSCrossRefGoogle Scholar
  80. 80.
  81. 81.
    N. Schupfer, D.D. Tskhakaya sr., R. Khanal, S. Kuhn, F. Aumayr, S. Figueira da Silva, H.P. Winter, Plasma Phys. Control. Fusion 48, 1093 (2006)ADSCrossRefGoogle Scholar
  82. 82.
    M.D. Campanell, M.V. Umansky, Phys. Rev. Lett. 116, 085003 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    B.F. Kraus, Y. Raitses, Phys. Plasmas 25, 030701 (2018)ADSCrossRefGoogle Scholar
  84. 84.
    T. Gyergyek, J. Kovačič, Contrib. Plasma Phys. 53, 189 (2013)ADSCrossRefGoogle Scholar
  85. 85.
    J. Adámek, J. Horacek, J. Seidl, H.W. Müller, R. Schrittwieser, F. Mehlmann, P. Vondracek, S. Ptak, Contrib. Plasma Phys. 54, 279 (2014)ADSCrossRefGoogle Scholar
  86. 86.
    M.A. Fink, M. Endler, T. Klinger, Contrib. Plasma Phys. 44, 668 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    F. Mehlmann, Private Communication (2012)Google Scholar
  88. 88.
    N. Hershkowitz, B. Nelson, J. Pew, D. Gates, Rev. Sci. Instrum. 54, 29 (1983)ADSCrossRefGoogle Scholar
  89. 89.
    V. Rohde, M. Laux, P. Bachmann, A. Herrmann, M. Weinlich M., J. Nucl. Mat. 241, 712 (1997)ADSCrossRefGoogle Scholar
  90. 90.
    B.S. Schneider, S. Costea, C. Ionita, R. Schrittwieser, V. Naulin, J.J. Rasmussen, R. Stärz, N. Vianello, J. Kovacic, T. Gyergyek, Indirectly heated strong and robust emissive probe for dense and hot plasmas, in XXXIIth Int. Conf. Phenomena in Ionized Gases (ICPIG) Iasi, Romania, 26–31 July 2015 (2015), P1.36.Google Scholar
  91. 91.
    B.S. Schneider, S. Costea, C. Ionita, R. Schrittwieser, V. Naulin, J.J. Rasmussen, N. Vianello, M. Spolaore, J. Kovačič, T. Gyergyek, R. Stärz, Advanced probe for transport measurements in Medium-Size Tokamaks, in 29th Symp. Fusion Techn. (SOFT) Prague, Czech Republic, 5–9 September 2016, Book of Abstracts (Institute of Plasma Physics, Czech Academy of Sciences, 2016), P4.069, p. 716 Google Scholar
  92. 92.
    B.S. Schneider, N. Vianello, M. Spolaore, V. Naulin, J.J. Rasmussen, R. Stärz, J. Kovačič, T. Gyergyek, S. Costea, C. Ionita, R. Schrittwieser, Tsv.K. Popov, Multi-diagnostic probe head for near-wall electric and magnetic measurements in medium-size tokamaksin 44th European Physical Society (EPS) Conf. Plasma Phys. Belfast, Northern Ireland, UK, 26–30 June 2017, (2017) P4.105, http://ocs.ciemat.es/EPS2017ABS/pdf/P4.105.pdf
  93. 93.
    B.S. Schneider, C. Ionita, S. Costea, O. Vasilovici, J. Kovačič, T. Gyergyek, B. Končar, M. Draksler, R. Nem, V. Naulin, J.J. Rasmussen, M. Spolaore, N. Vianello, R. Stärz, A. Herrmann, R. Schrittwieser, Plasma Phys. Contr. Fusion 61, 054004 (2019)CrossRefGoogle Scholar
  94. 94.
    P. Balan, R. Schrittwieser, J. Adámek, O. Bařina, P. De Beule, I. Ďuran, J.P. Gunn, R. Hrach, M. Hron, C. Ionita, E. Martines, R. Pánek, J. Stöckel, G. Van Den Berge, G. Van Oost, T. Van Rompuy, M. Vicher, Contrib. Plasma Phys. 44, 683 (2004)ADSCrossRefGoogle Scholar
  95. 95.
    J.P. Gunn, R. Schrittwieser, P. Balan, C. Ionita, J. Stöckel, J. Adámek, I. Ďuran, M. Hron, R. Pánek, O. Bařina, R. Hrach, M. Vicher, G. Van Oost, T. Van Rompuy, E. Martines, Rev. Sci. Instrum. 75, 4328 (2004)ADSCrossRefGoogle Scholar
  96. 96.
    J. Adamek, M. Kocan, R. Panek, J.P. Gunn, E. Martines, J. Stöckel, C. Ionita, G. Popa, C. Costin, J. Brotankova, R. Schrittwieser, G. Van Oost, Contrib. Plasma Phys. 48, 395 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    J. Stöckel, J. Adámek, P. Balan, O. Bilyk, J. Brotánková, R. Dejarnac, P. Devynck, I. Duran, J.P. Gunn, M. Hron, J. Horacek, C. Ionita, M. Kocan, E. Martines, R. Panek, P. Peleman, R. Schrittwieser, G. Van Oost, F. Zacek, J. Phys.: Conf. Ser. 63, 012001 (2007)Google Scholar
  98. 98.
    J. Adámek, J. Stöckel, H. Horacek, V. Rohde, H.W. Müller, A. Herrmann, C. Ionita, F. Mehlmann, J. Brotankova, R. Schrittwieser, J. Nucl. Mat. 390–391, 1114 (2009)CrossRefADSGoogle Scholar
  99. 99.
    M. Komm, J. Adámek, Z. Pekárek, R. Pánek, Contrib. Plasma Phys. 50, 814 (2010)ADSCrossRefGoogle Scholar
  100. 100.
    J. Horaček, J. Adámek, H.W. Müller, J. Seidl, A.H. Nielsen, V. Rohde, F. Mehlmann, C. Ionita, E. Havlčková, Nucl. Fusion 50, 105001 (2010) ADSCrossRefGoogle Scholar
  101. 101.
    J. Adámek, V. Rohde, H.W. Müller, B. Kurzan, C. Ionita, R. Schrittwieser, F. Mehlmann, J. Stöckel, J. Horacek, V. Weinzettl, Contrib. Plasma Phys. 50, 854 (2010)ADSCrossRefGoogle Scholar
  102. 102.
    H.W. Müller, J. Adámek, R. Cavazzana, G. Conway, J.C. Fuchs, J.P. Gunn, A. Herrmann, J. Horacek, C. Ionita, A. Kallenbach, M. Kocan, M. Maraschek, Ch Maszl, F. Mehlmann, B. Nold, M. Peterka, V. Rohde, J. Schweinzer, R. Schrittwieser, N. Vianello, E. Wolfrum, M. Zuin, Nucl. Fusion 51, 073023 (2011)ADSCrossRefGoogle Scholar
  103. 103.
    M. Komm, J. Adámek, R. Dejarnac, J.P. Gunn, Z. Pekarek, Plasma Phys. Control. Fusion 53, 015005 (2011)ADSCrossRefGoogle Scholar
  104. 104.
    J. Adámek, M. Peterka, T. Gyergyek, P. Kudrna, M. Tichý, Nukleonika 57, 297 (2012)Google Scholar
  105. 105.
    J. Adámek, M. Peterka, T. Gyergyek, P. Kudrna, M. Ramisch, U. Stroth, J. Cavalier, M. Tichý, Contrib. Plasma Phys. 53, 39 (2013)ADSCrossRefGoogle Scholar
  106. 106.
    M. Zanáška, J. Adámek, M. Peterka, P. Kudrna, M. Tichý, Phys. Plasmas 22, 033516 (2015)ADSCrossRefGoogle Scholar
  107. 107.
    R. Pánek, J. Adámek, M. Aftanas, P. Blková, P. Böhm, F. Brochard, P. Cahyna, J. Cavalier, R. Dejarnac, M. Dimitrova, O. Grover, J. Harrison, P. Háček, J. Havlček, A. Havránek, J. Horáček, M. Hron, M. Imršek, F. Janky, A. Kirk, M. Komm, K. Kovařk, J. Krbec, L. Kripner, T. Markovič, K. Mitošinková, J. Mlynář, D. Naydenkova, M. Peterka, J. Seidl, J. Stöckel, E. Štefániková, M. Tomeš, J. Urban, P. Vondráček, M. Varavin, J. Varju, V. Weinzettl, J. Zajac, COMPASS team, Plasma Phys. Control. Fusion 58, 014015 (2016)ADSCrossRefGoogle Scholar
  108. 108.
    P. Ondac, J. Horaček, J. Seidl, P. Vondrácek, H.W. Müller, J. Adámek, A.H. Nielsen, Acta Polytech. 55, 128 (2015)CrossRefGoogle Scholar
  109. 109.
    N.R. Walkden, J. Adámek, S. Allan, B.D. Dudson, S. Elmore, G. Fishpool, J. Harrison, A. Kirk, M. Komm, Rev. Sci. Instrum. 86, 023510 (2015)ADSCrossRefGoogle Scholar
  110. 110.
    C. Silva, J. Adámek, H. Fernandes, H. Figueiredo, Plasma Phys. Control. Fusion 57, 025003 (2015)ADSCrossRefGoogle Scholar
  111. 111.
    J. Adámek, H.W. Müller, C. Silva, R. Schrittwieser, C. Ionita, F. Mehlmann, S. Costea, J. Horacek, B. Kurzan, P. Bilkova, P. Böhm, M. Aftanas, P. Vondracek, J. Stöckel, R. Panek, H. Fernandes, H. Figueiredo, Rev. Sci. Instrum. 87, 043510 (2016)ADSCrossRefGoogle Scholar
  112. 112.
    M. Dimitrova, Tsv.K. Popov, J. Adamek, P. Kovačič, E. Ivanova, D. Hasan, J. López-Bruna, P. Seidl, R. Vondráček, J. Dejarnac, M. Stöckel, R.Panek Imršek, Plasma Phys. Control. Fusion 59, 125001 (2017)ADSCrossRefGoogle Scholar
  113. 113.
    M. Spolaore, K. Kovařk, J. Stöckel, J. Adámek, R. Dejarnac, I. Ďuran, M. Komm, T. Markovic, E. Martines, R. Panek, J. Seidl, N. Vianello, Nucl. Mat. Energy 12, 844 (2017)CrossRefGoogle Scholar
  114. 114.
    V. Weinzettl, J. Adámek, M. Berta, P. Bilkova, O. Bogar, P. Bohm, J. Cavalier, R. Dejarnac, M. Dimitrova, O. Ficker, D. Fridrich, O. Grover, P. Hacek, J. Havlicek, A. Havranek, J. Horacek, M. Hron, M. Imrisek, M. Komm, K. Kovarik, J. Krbec, T. Markovic, E. Matveeva, K. Mitosinkova, J. Mlynar, D. Naydenkova, R. Panek, R. Paprok, M. Peterka, A. Podolnik, J. Seidl, M. Sos, J. Stöckel, M. Tomes, M. Varavin, J. Varju, M. Vlainic, P. Vondracek, J. Zajac, F. Zacek, M. Stano, G. Anda, D. Dunai, T. Krizsanoczi, D. Refy, S. Zoletnik, A. Silva, R. Gomes, T. Pereira, Tsv. Popov, D. Sarychev, G.P. Ermak, J. Zebrowski, M. Jakubowski, M. Rabinski, K. Malinowski, S. Nanobashvili, M. Spolaore, N. Vianello, E. Gauthier, J.P. Gunn, A. Devitre, J. Instrum. 12, C12015 (2017)CrossRefGoogle Scholar
  115. 115.
    O. Grover, J. Adámek, J. Seidl, A. Devitre, M. Sos, P. Vondracek, P. Bilkova, M. Hron, Rev. Sci. Instrum. 88, 063501 (2017)ADSCrossRefGoogle Scholar
  116. 116.
    J. Adámek, J. Seidl, J. Horacek, M. Komm, T. Eich, R. Panek, J. Cavalier, A. Devitre, M. Peterka, P. Vondracek, J. Stöckel, D. Sestak, O. Grover, P. Bilkova, P. Böhm, J. Varju, A. Havranek, V. Weinzettl, J. Lovell, M. Dimitrova, K. Mitosinkova, R. Dejarnac, M. Hron, Nucl. Fusion 57, 116017 (2017)ADSCrossRefGoogle Scholar
  117. 117.
    J. Adámek, J. Seidl, M. Komm, V. Weinzettl, R. Panek, J. Stöckel, M. Hron, P. Hacek, M. Imrisek, P. Vondracek, J. Horacek, A. Devitre, Nucl. Fusion 57, 022010 (2017)ADSCrossRefGoogle Scholar
  118. 118.
    M. Čada, Z. Hubička, P. Adámek, J. Olejnček, Š. Kment, J. Adámek, J. Stöckel, Rev. Sci. Instrum. 86, 073510 (2015)ADSCrossRefGoogle Scholar
  119. 119.
    V.I. Demidov, S.V. Ratynskaia, K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002)ADSCrossRefGoogle Scholar
  120. 120.
    S.V. Ratynskaia, V.I. Demidov, K. Rypdal, Rev. Sci. Instrum. 71, 1367 (2000)ADSCrossRefGoogle Scholar
  121. 121.
    V.I. Demidov, S.M. Finnegan, M.E. Koepke, E.W. Reynolds, Rev. Sci. Instrum. 74, 4558 (2003)ADSCrossRefGoogle Scholar
  122. 122.
    V.I. Demidov, S.M. Finnegan, M.E. Koepke, E.W. Reynolds, Contrib. Plasma Phys. 44, 689 (2004)ADSCrossRefGoogle Scholar
  123. 123.
    M.E. Koepke, V.I. Demidov, S.M. Finnegan, E.W. Reynolds, Contrib. Plasma Phys. 46, 385 (2006)ADSCrossRefGoogle Scholar
  124. 124.
    V.I. Demidov, M.E. Koepke, Y. Raitses, Rev. Sci. Instrum. 81, 10E129 (2010)CrossRefGoogle Scholar
  125. 125.
    S. Costea, Experimental and numerical investigations of electric probes and blobs in magnetically-confined fusion plasmas Ph.D. thesis, University of Innsbruck, 2018.Google Scholar

Copyright information

© The Author(s) 2019 2019

Open Access Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Codrina Ionita
    • 1
  • Bernd Sebastian Schneider
    • 1
  • Stefan Costea
    • 1
  • Ovidiu Vasilovici
    • 1
  • Jernej Kovačič
    • 2
  • Tomaz Gyergyek
    • 2
    • 3
  • Volker Naulin
    • 4
  • Jens Juul Rasmussen
    • 4
  • Nicola Vianello
    • 5
  • Monica Spolaore
    • 5
  • Ronald Stärz
    • 1
    • 6
  • Roman Schrittwieser
    • 1
    Email author
  1. 1.Institute for Ion Physics and Applied Physics, University of InnsbruckInnsbruckAustria
  2. 2.Reactor Physics Department, Jožef Stefan InstituteLjubljanaSlovenia
  3. 3.Faculty of Electrical Engineering, University of LjubljanaLjubljanaSlovenia
  4. 4.Department of PhysicsTechnical University of DenmarkKgs. LyngbyDenmark
  5. 5.Consorzio RFXPaduaItaly
  6. 6.Mechatronic Department, Management Center InnsbruckInnsbruckAustria

Personalised recommendations