Advertisement

Entanglement in anisotropic expanding spacetime

  • Roberto Pierini
  • Shahpoor Moradi
  • Stefano ManciniEmail author
Regular Article
  • 26 Downloads
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We study the effect of space anisotropy in the entanglement generated by expanding universe on spin 0 and 1/2 fields. For massive scalar field we find revivals of entanglement entropy vs. momentum after decreasing from the maximum at k = 0. In massive Dirac field the effect is a slight distortion of the non-monotonic profile giving rise to the maximum of entanglement entropy at k > 0. More interestingly, massless field of both type show that can only get entangled through anisotropy, with a maximum of entanglement entropy occurring at k > 0.

Graphical abstract

References

  1. 1.
    J.L. Ball, I.F. Schuller, F.P. Schuller, Phys. Lett. A 359, 550 (2006) MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Moradi, R. Pierini, S. Mancini, Phys. Rev. D 89, 024022 (2014) CrossRefGoogle Scholar
  3. 3.
    E. Martin-Martinez, N.C. Menicucci, Class. Quantum Grav. 29, 224011 (2012) CrossRefGoogle Scholar
  4. 4.
    L. Parker, Phys. Rev. Lett. 21, 562 (1968) CrossRefGoogle Scholar
  5. 5.
    L. Parker, Phys. Rev. 183, 1057 (1969) CrossRefGoogle Scholar
  6. 6.
    L. Parker, Phys. Rev. D 3, 346 (1971) CrossRefGoogle Scholar
  7. 7.
    N.D. Birrell, P.C. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982) Google Scholar
  8. 8.
    R.G. Cai, Y.Z. Ma, B. Tang, Z.L. Tuo, Phys. Rev. D 87, 123522 (2013) CrossRefGoogle Scholar
  9. 9.
    Z.Q. Sun, F.Y. Wang, Mon. Not. Roy. Astron. Soc. 478, 5153 (2018) CrossRefGoogle Scholar
  10. 10.
    B. Javanmardi, C. Porciani, P. Kroupa, J. Pflamm-Altemburg, Astrophys. J. 810, 47 (2015) CrossRefGoogle Scholar
  11. 11.
    Y.A. Zeldovich, A.A. Starobinski, Zh. Exp. Theor. Fiz. 61, 2161 (1971) [Sov. Phys. JETP 34, 1159 (1972)] Google Scholar
  12. 12.
    K.H. Lotze, Class. Quantum Grav. 3, 81 (1986) CrossRefGoogle Scholar
  13. 13.
    K.H. Lotze, Class. Quantum Grav. 2, 351 (1985) CrossRefGoogle Scholar
  14. 14.
    R. Pierini, S. Moradi, S. Mancini, Nucl. Phys. B 924, 684 (2017) CrossRefGoogle Scholar
  15. 15.
    R. Pierini, S. Moradi, S. Mancini, Int. J. Theor. Phys. 55, 3059 (2016) CrossRefGoogle Scholar
  16. 16.
    N.D. Birrell, P.C.W. Davies, J. Phys. A: Math. General 13, 2109 (1980) CrossRefGoogle Scholar
  17. 17.
    N.D. Birrell, Proc. R. Soc. Lond. A 367, 123 (1979) CrossRefGoogle Scholar
  18. 18.
    G. Mangano et al., Nucl. Phys. B 729, 221 (2005) CrossRefGoogle Scholar
  19. 19.
    R. Trotta, A. Melchiorri, Phys. Rev. Lett. 95, 011305 (2005) CrossRefGoogle Scholar
  20. 20.
    B. Follin, L. Knox, M. Millea, Z. Pan, Phys. Rev. Lett. 115, 091301 (2015) CrossRefGoogle Scholar
  21. 21.
    V. Mukhanov, Physical Foundation of Cosmology (Cambridge University Press, Cambridge, 2005) Google Scholar
  22. 22.
    G. Ver Steeg, N.C. Menicucci, Phys. Rev. D 79, 044027 (2009) CrossRefGoogle Scholar
  23. 23.
    D. Rideout et al., Class. Quantum Grav. 29, 224011 (2012) CrossRefGoogle Scholar
  24. 24.
    I. Fuentes, R.B. Mann, E. Martin-Martinez, S. Moradi, Phys. Rev. D 82, 045030 (2010) CrossRefGoogle Scholar
  25. 25.
    S. Mancini, R. Pierini, M.M. Wilde, New J. Phys. 16, 123049 (2014) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Roberto Pierini
    • 1
  • Shahpoor Moradi
    • 2
  • Stefano Mancini
    • 3
    • 4
    Email author
  1. 1.Institute of Theoretical Physics, University of Warsaw02-093 WarsawPoland
  2. 2.University of Calgary, Department of GeoscienceCalgaryCanada
  3. 3.School of Science and Technology, University of CamerinoCamerinoItaly
  4. 4.INFN-Sezione di PerugiaPerugiaItaly

Personalised recommendations