Advertisement

Ab initio molecular dynamics studies of Au38(SR)24 isomers under heating

  • Rosalba Juarez-MosquedaEmail author
  • Sami Malola
  • Hannu Häkkinen
Open Access
Regular Article
  • 233 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

Despite the great success in achieving monodispersity for a great number of monolayer-protected clusters, to date little is known about the dynamics of these ultra-small metal systems, their decomposition mechanisms, and the energy that separates their structural isomers. In this work, we use density functional theory (DFT) to calculate and compare the ground state energy and the Born-Oppenheimer molecular dynamics of two well-known Au38(SCH2CH2Ph)24 nanocluster isomers. The aim is to shed light on the energy difference between the two clusters isomers and analyze their decomposition mechanisms triggered by high temperatures. The results demonstrate that the energy that separates the two isomers is of the same order of magnitude as the energy difference between the fcc and hcp phases of bulk gold reported earlier. Moreover, the MD simulations show disordering and eventual fragmentation of the cluster structures at high temperature which seem to proceed via spontaneous formation of Aux(SR)y polymeric chains. Hence, these results greatly contribute to understanding the possible decomposition mechanism, stability and robustness of existing and new monolayer-protected clusters.

Graphical abstract

Notes

Acknowledgments

Open access funding provided by University of Jyväskylä (JYU).

Supplementary material

References

  1. 1.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 7, 801 (1994) CrossRefGoogle Scholar
  2. 2.
    R.L. Whetten, J.T. Khoury, M.M. Alvarez, S. Murthy, I. Vezmar, Z.L. Wang, P.W. Stephens, C.L. Cleveland, W.D. Luedtke, U. Landman, Adv. Mater. 8, 428 (1996) CrossRefGoogle Scholar
  3. 3.
    M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M. Shafigullin, I. Vezmar, R.L. Whetten, Chem. Phys. Lett. 266, 91 (1997) CrossRefGoogle Scholar
  4. 4.
    T.G. Schaaff, M.N. Shafigullin, J.T. Khoury, I. Vezmar, R.L. Whetten, W.G. Cullen, P.N. First, C. Gutiérrez-Wing, J. Ascensio, M.J. Jose-Yacamán, J. Phys. Chem. B 101, 7885 (1997) CrossRefGoogle Scholar
  5. 5.
    T. Tsukuda, H. Häkkinen, Protected Metal Clusters: From Fundamentals to Applications, edited by T. Tsukuda, H. Häkkinen, 1st edn. (Elsevier, Amsterdam, 2015) Google Scholar
  6. 6.
    R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 116, 10346 (2016) CrossRefGoogle Scholar
  7. 7.
    R. Jin, Nanoscale 7, 1549 (2015) CrossRefGoogle Scholar
  8. 8.
    I. Chakraborty, T. Pradeep, Chem. Rev. 117, 8208 (2017) CrossRefGoogle Scholar
  9. 9.
    B. Zhang, G. Salassa, T. Burgi, Chem. Commun. 52, 9205 (2016) CrossRefGoogle Scholar
  10. 10.
    T. Burgi, Nanoscale 7, 15553 (2015) CrossRefGoogle Scholar
  11. 11.
    S. Knoppe, I. Dolamic, T. Bürgi, J. Am. Chem. Soc. 134, 13114 (2012) CrossRefGoogle Scholar
  12. 12.
    K.R. Krishnadas, A. Baksi, A. Ghosh, G. Natarajan, A. Som, T. Pradeep, Acc. Chem. Res. 50, 1988 (2017) CrossRefGoogle Scholar
  13. 13.
    A. Ghosh, D. Ghosh, E. Khatun, P. Chakraborty, T. Pradeep, Nanoscale 9, 1068 (2017) CrossRefGoogle Scholar
  14. 14.
    M. Rambukwella, L. Sementa, A. Fortunelli, A. Dass, J. Phys. Chem. C 121, 14929 (2017) CrossRefGoogle Scholar
  15. 15.
    J. Jung, S. Kang, Y.-K. Han, Nanoscale 4, 4206 (2012) CrossRefGoogle Scholar
  16. 16.
    L.D. Marks, Rep. Prog. Phys. 57, 603 (1994) CrossRefGoogle Scholar
  17. 17.
    T. Ben-David, Y. Lereah, G. Deutscher, J.M. Penisson, A. Bourret, R. Kofman, P. Cheyssac, Phys. Rev. Lett. 78, 2585 (1997) CrossRefGoogle Scholar
  18. 18.
    D. Smith, A.K. Petford-long, L.R. Wallenberg, J.O. Bovin, Science 233, 872 (1986) CrossRefGoogle Scholar
  19. 19.
    S. Iijima, T. Ichihashi, Phys. Rev. Lett. 56, 616 (1986) CrossRefGoogle Scholar
  20. 20.
    Z.W. Wang, R.E. Palmer, Phys. Rev. Lett. 108, 245502 (2012) CrossRefGoogle Scholar
  21. 21.
    Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan, Nature 451, 46 (2008) CrossRefGoogle Scholar
  22. 22.
    M. Azubel, A.L. Koh, K. Koyasu, T. Tsukuda, R.D. Kornberg, ACS Nano 11, 11866 (2017) CrossRefGoogle Scholar
  23. 23.
    M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen, R.D. Kornberg, Science 345, 909 (2014) CrossRefGoogle Scholar
  24. 24.
    W. Chen, S. Chen, Functional Nanometer-Sized Clusters of Transition Metals, edited by W. Chen, S. Chen, 1st edn. (The Royal Society of Chemistry, 2014) Google Scholar
  25. 25.
    K.M.Ø. Jensen, P. Juhas, M.A. Tofanelli, C.L. Heinecke, G. Vaughan, C.J. Ackerson, S.J.L. Billinge, Nat. Commun. 7, 11859 (2016) CrossRefGoogle Scholar
  26. 26.
    H. Häkkinen, R.N. Barnett, U. Landman, Phys. Rev. Lett. 82, 3264 (1999) CrossRefGoogle Scholar
  27. 27.
    I.L. Garzón, C. Rovira, K. Michaelian, M.R. Beltrán, P. Ordejón, J. Junquera, D. Sánchez-Portal, E. Artacho, J.M. Soler, Phys. Rev. Lett. 85, 5250 (2000) CrossRefGoogle Scholar
  28. 28.
    I.L. Garzón, K. Michaelian, M.R. Beltrán, A. Posada-Amarillas, P. Ordejón, E. Artacho, D. Sánchez-Portal, J.M. Soler, Eur. Phys. J. D 9, 211 (1999) CrossRefGoogle Scholar
  29. 29.
    Y. Pei, Y. Gao, X.C. Zeng, J. Am. Chem. Soc. 130, 7830 (2008) CrossRefGoogle Scholar
  30. 30.
    H. Häkkinen, M. Walter, H. Grönbeck, J. Phys. Chem. B 110, 9927 (2006) CrossRefGoogle Scholar
  31. 31.
    O. Lopez-Acevedo, H. Tsunoyama, T. Tsukuda, H. Häkkinen, C.M. Aikens, J. Am. Chem. Soc. 132, 8210 (2010) CrossRefGoogle Scholar
  32. 32.
    D. Jiang, W. Luo, M.L. Tiago, S. Dai, J. Phys. Chem. C 112, 13905 (2008) CrossRefGoogle Scholar
  33. 33.
    H. Qian, W.T. Eckenhoff, Y. Zhu, T. Pintauer, R. Jin, J. Am. Chem. Soc. 132, 8280 (2010) CrossRefGoogle Scholar
  34. 34.
    S. Tian, Y.-Z. Li, M.-B. Li, J. Yuan, J. Yang, Z. Wu, R. Jin, Nat. Commun. 6, 8667 (2015) CrossRefGoogle Scholar
  35. 35.
    H. Mäkinen, V. Häkkinen, Eur. Phys. J. D 66, 310 (2012) CrossRefGoogle Scholar
  36. 36.
    J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A. Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G.K.H. Madsen, R.M. Nieminen, J.K. Nørskov, M. Puska, T.T. Rantala, J. Schiøtz, K.S. Thygesen, K.W. Jacobsen, J. Phys.: Condens. Matter 22, 253202 (2010) Google Scholar
  37. 37.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 35109 (2005) CrossRefGoogle Scholar
  38. 38.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) CrossRefGoogle Scholar
  39. 39.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefGoogle Scholar
  40. 40.
    K. Berland, P. Hyldgaard, Phys. Rev. B 89, 35412 (2014) CrossRefGoogle Scholar
  41. 41.
    A.H. Larsen, M. Kuisma, J. Löfgren, Y. Pouillon, P. Erhart, P. Hyldgaard, Model. Simul. Mater. Sci. Eng. 25, 65004 (2017) CrossRefGoogle Scholar
  42. 42.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) CrossRefGoogle Scholar
  43. 43.
    M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen, Proc. Natl. Acad. Sci. USA 105, 9157 (2008) CrossRefGoogle Scholar
  44. 44.
    C. Wang, H. Wang, T. Huang, X. Xue, F. Qiu, Q. Jiang, Sci. Rep. 5, 10213 (2015) CrossRefGoogle Scholar
  45. 45.
    X. Huang, S. Li, Y. Huang, S. Wu, X. Zhou, S. Li, C.L. Gan, F. Boey, C.A. Mirkin, H. Zhang, Nat. Commun. 2, 292 (2011) CrossRefGoogle Scholar
  46. 46.
    H. Qian, Y. Zhu, R. Jin, ACS Nano 3, 3795 (2009) CrossRefGoogle Scholar
  47. 47.
    B.M. Quinn, P. Liljeroth, V. Ruiz, T. Laaksonen, K. Kontturi, J. Am. Chem. Soc. 125, 6644 (2003) CrossRefGoogle Scholar
  48. 48.
    O. Toikkanen, V. Ruiz, G. Rönnholm, N. Kalkkinen, P. Liljeroth, B.M. Quinn, J. Am. Chem. Soc. 130, 11049 (2008) CrossRefGoogle Scholar
  49. 49.
    P.R. Nimmala, S. Theivendran, G. Barcaro, L. Sementa, C. Kumara, V.R. Jupally, E. Apra, M. Stener, A. Fortunelli, A. Dass, J. Phys. Chem. Lett. 6, 2134 (2015) CrossRefGoogle Scholar
  50. 50.
    C. Zeng, C. Liu, Y. Pei, R. Jin, ACS Nano 7, 6138 (2013) CrossRefGoogle Scholar
  51. 51.
    C. Zeng, H. Qian, T. Li, G. Li, N.L. Rosi, B. Yoon, R.N. Barnett, R.L. Whetten, U. Landman, R. Jin, Angew. Chemie Int. Ed. 51, 13114 (2012) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Rosalba Juarez-Mosqueda
    • 1
    Email author
  • Sami Malola
    • 1
  • Hannu Häkkinen
    • 1
    • 2
  1. 1.Department of PhysicsNanoscience Center, University of JyväskyläJyväskyläFinland
  2. 2.Department of ChemistryNanoscience Center, University of JyväskyläJyväskyläFinland

Personalised recommendations