Advertisement

Analytical computation of nonclassical behavior for asymmetric two two-level atoms interacting with SU(1,1) quantum system

  • Abdallah A. NahlaEmail author
  • Mohamed M. A. Ahmed
  • Sultan Z. Alamri
Regular Article
  • 41 Downloads

Abstract

A quantum model of the asymmetric two two-level atoms interacting with the SU(1,1) quantum system is suggested. The rotating wave approximation (RWA) and the atom–atom interaction are considered in the Hamiltonian operator. The time-dependent wave function for asymmetric case is obtained analytically via solving the Schrödinger equation. Initially, the SU(1,1) quantum system is prepared in a Barut–Girardello coherent state and two atoms are in superposition states. Some of statistical properties of the proposed quantum model are calculated such as the atomic population inversion, the linear entropy as an indicator of entanglement degree, and the coherence degree by the second-order correlation function. Therefore, the nonclassical properties are discussed for different values of the initial atomic angles, the Barut–Girardello parameter, the Bargmann index and the detuning parameters. We note that the proposed quantum system is sensitive to the Barut–Girardello parameter and the Bargmann index. Moreover, there are nonclassical characteristics of the proposed system with the variation in the detuning parameters.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    Y. Kaluzny, P. Goy, M. Gross, J.M. Raimond, S. Haroche, Phys. Rev. Lett. 51, 1175 (1983) ADSCrossRefGoogle Scholar
  2. 2.
    G. Rempe, H. Walther, N. Klein, Phys. Rev. Lett. 58, 353 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    A. Boca, R. Miller, K.M. Birnbaum, A.D. Boozer, J. McKeever, H.J. Kimble, Phys. Rev. Lett. 93, 233603 (2004) ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  5. 5.
    C.H. Bennett, D.P. Di Vincenzo, Nature 404, 247 (2000) ADSCrossRefGoogle Scholar
  6. 6.
    J. Levy, Phys. Rev. A 64, 052306 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    G. Burkard, D. Loss, Phys. Rev. Lett. 88, 047903 (2002) ADSCrossRefGoogle Scholar
  8. 8.
    S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998) ADSCrossRefGoogle Scholar
  9. 9.
    G.J. Milburn, S.L. Braunstein, Phys. Rev. A 60, 937 (1999) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    M.S. Abdalla, Int. J. Mod. Phys. B 16, 2837 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    M.S. Abdalla, J. Perina, J. Krepelka, J. Opt. Soc. Am. B 23, 1146 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Abdalla, M.M. Nassar, Ann. Phys. N.Y. 324, 637 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Abdalla, J. Perina, J. Krepelka, Opt. Commun. 282, 2878 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    G.-F. Zhang, S.-S. Li, Eur. Phys. J. D 37, 123 (2006) ADSCrossRefGoogle Scholar
  15. 15.
    Z.-N. Hu, S.H. Youn, K. Kang, C.S. Kim, J. Phys. A: Math. Gen. 39, 10523 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Abdalla, E. Lashin, G. Sadiek, J. Phys. B: At. Mol. Opt. Phys. 41, 0155028 (2008) CrossRefGoogle Scholar
  17. 17.
    M. Abdel-Aty, M.S. Abdalla, B.C. Sander, Phys. Lett. A 373, 315 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    G. Sadiek, E. Lashin, M.S. Abdalla, Physica B 404, 1719 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    F.A.A. El-Orany, M.S. Abdalla, J. Phys. A: Math. Theor. 44, 035302 (2011) ADSCrossRefGoogle Scholar
  20. 20.
    E.T. Jayness, F.W. Cummings, Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  21. 21.
    M. Tavis, M. Cummings, Phys. Rev. 170, 379 (1968) ADSCrossRefGoogle Scholar
  22. 22.
    M.S. Abdalla, A.-S.F. Obada, M. Abdel-Aty, Ann. Phys. N.Y. 318, 266 (2005) ADSCrossRefGoogle Scholar
  23. 23.
    M.S. Abdalla, J. Krepelka, J. Perina, J. Phys. B: At. Mol. Opt. Phys. 39, 1563 (2006) ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Abdalla, E.M. Khalil, A.S.-F. Obada, Ann. Phys. 322, 2554 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Khalil, M.S. Abdalla, A.S.-F. Obada, J. Perina, J. Opt. Soc. Am. B 27, 266 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    M.S. Abdalla, E.M. Khalil, A.-S.F. Obada, Ann. Phys. N.Y. 326, 2486 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Abdalla, H. Elech, J. Perina, J. Opt. Soc. Am. B 29, 719 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    M.S. Abdalla, M.M.A. Ahmed, Opt. Commun. 285, 3578 (2012) ADSCrossRefGoogle Scholar
  29. 29.
    M.K. Tavassoly, H. Hekmatara, Commun. Theor. Phys. 64, 439 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    M.S. Abdalla, M.M.A. Ahmed, A.-S.F. Obada, J. Russ. Laser Res. 34, 87 (2013) CrossRefGoogle Scholar
  31. 31.
    M.M.A. Ahmed, M. Qothamey, S. Abdel-Khalek, Appl. Math. Inf. Sci. 8, 1093 (2014) CrossRefGoogle Scholar
  32. 32.
    M.M.A. Ahmed, M. Qothamey, S. Abdel-Khalek, Opt. Rev. 22, 25 (2015) CrossRefGoogle Scholar
  33. 33.
    M.S. Abdalla, E.M. Khalil, A.-S.F. Obada, Phys. A 454, 99 (2016) CrossRefGoogle Scholar
  34. 34.
    M.S. Abdalla, E.M. Khalil, A.-S.F. Obada, J. Perina, J. Krepelka, AIP Adv. 7, 015013 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    K.M. Ng, C.F. Lo, K.L. Liu, Physica A 275, 463 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    M.S. Abdalla, M.M.A. Ahmed, J. Phys. B: At. Mol. Opt. Phys. 43, 155503 (2010) ADSCrossRefGoogle Scholar
  37. 37.
    M.S. Abdalla, M.M.A. Ahmed, Opt. Commun. 284, 1933 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    M.S. Abdalla, E.M. Khalil, A.S.-F. Obada, J. Perina, J. Krepelka, Eur. Phys. J. Plus 130, 227 (2015) CrossRefGoogle Scholar
  39. 39.
    B. Masashi, J. Opt. Soc. Am. B 10, 1347 (1993) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Abdallah A. Nahla
    • 1
    • 2
    Email author
  • Mohamed M. A. Ahmed
    • 3
  • Sultan Z. Alamri
    • 1
  1. 1.Department of Mathematics,Faculty of ScienceTaibah UniversityAl-MadinahSaudi Arabia
  2. 2.Department of MathematicsFaculty of Science, Tanta UniversityTantaEgypt
  3. 3.Department of MathematicsFaculty of Science, Al-Azhar UniversityCairoEgypt

Personalised recommendations