Advertisement

High-capacity quantum private comparison protocol with two-photon hyperentangled Bell states in multiple-degree of freedom

  • Ling Xu
  • Zhi-wen ZhaoEmail author
Regular Article
  • 24 Downloads
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

In this paper, the first high-capacity quantum private comparison (QPC) protocol is proposed to solve the comparison problem of equality of two parties’ secret inputs without revealing them out. This scheme is assisted with the semi-honest third party to fulfill the task. And the genuine two-photon hyperentangled Bell states are utilized as the important information carriers. Different from the previous protocols, this hyperentangled Bell states are composed of only two photons but characterize six qubits in two longitudinal momentum and polarization degrees of freedom (DOFs). In addition, this protocol possesses a higher information capacity and saves massive quantum resources for that the two-photon system can carry 6 bits of information. Meanwhile, this scheme can be applied and useful for long-distance quantum communication to improve the feasibility of QPC protocol. Furthermore, 64 nonorthogonal single-photon states as decoy photons are utilized to detect the security of the quantum channel. This method not only increases the security of the quantum channel, but also decreases the decoherence effect of environment noise. Moreover, this QPC protocol is analyzed to be immune to various kinds of attack. Finally, this QPC protocol can obtain the good application to compare the secret inputs securely, efficiently and feasibly.

Graphical abstract

References

  1. 1.
    C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), Bangalore, Vol. 175 Google Scholar
  2. 2.
    A.-K. Ekert, Phys. Rev. Lett. 67, 661 (1991) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.-H. Bennett, G. Brassard, N.-D. Mermin, Phys. Rev. Lett. 68, 557 (1992) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    C. Zhang, J. Zhu, Q. Wang, Eur. Phys. J. D 72, 108 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    Y.-Y. Fei, X.-D. Meng, M. Gao, Z. Ma, H. Wang, Eur. Phys. J. D 72, 107 (2018) ADSCrossRefGoogle Scholar
  6. 6.
    J. Zhu, C. Zhang, Q. Wang, Eur. Phys. J. D 71, 319 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    H. Jiang, M. Gao, B. Yan, W. Wang, Z. Ma, Eur. Phys. J. D 70, 78 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    F. Gao, S.-J. Qin, F.-Z. Guo, Q.-Y. Wen, IEEE J. Quantum Electron. 47, 630 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Int. J. Mod. Phys. B 24, 4611 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Phys. Lett. A 355, 172 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    B. Liu, F. Gao, Q.-Y. Wen, IEEE J. Quantum Electron. 47, 1383 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    J. Wang, H. Wang, X. Qin, Z. Wei, Z. Zhang, Eur. Phys. J. D 70, 5 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    Y.-G. Tan, Q.-Y. Cai, H.-F. Yang, Y.-H. Hu, Eur. Phys. J. D 69, 258 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    J.-Z. Huang, Z.-Q. Yin, S. Wang, H.-W. Li, W. Chen, Z.-F. Han, Eur. Phys. J. D 66, 159 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    M. Hillery, V. Bužek, A. Berthiaume, Phys. Rev. A 59, 1829 (1999) ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Karlsson, M. Koashi, N. Imoto, Phys. Rev. A 59, 162 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    C.-M. Bai, Z.-H. Li, M.-M. Si, Y.-M. Li, Eur. Phys. J. D 71, 255 (2017) ADSCrossRefGoogle Scholar
  18. 18.
    H.-Y. Jia, Q.-Y. Wen, F. Gao, S.-J. Qin, F.-Z. Guo, Phys. Lett. A 376, 1035 (2012) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Gao, F.-Z. Guo, Q.-Y. Wen, F.-C. Zhu, Phys. Rev. A 72, 036302 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    F.-G. Deng, X.-H. Li, C.-Y. Li, P. Zhou, H.-Y. Zhou, Phys. Rev. A 72, 044301 (2005) ADSCrossRefGoogle Scholar
  21. 21.
    F.-G. Deng, H.-Y. Zhou, G.-L. Long, Phys. Rev. A 337, 329 (2005) Google Scholar
  22. 22.
    M. Ray, S. Chatterjee, I. Chakrabarty, Eur. Phys. J. D 70, 114 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    Z.-J. Zhang, J. Yang, Z.-X. Man, Y. Li, Eur. Phys. J. D 33, 133 (2005) ADSCrossRefGoogle Scholar
  24. 24.
    G.-L. Long, X.-S. Liu, Phys. Rev. A 65, 032302 (2002) ADSCrossRefGoogle Scholar
  25. 25.
    F.-G. Deng, G.-L. Long, X.-S. Liu, Phys. Rev. A 68, 042317 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    F.-G. Deng, G.-L. Long, Phys. Rev. A 69, 052319 (2004) ADSCrossRefGoogle Scholar
  27. 27.
    J.-Y. Hu, B. Yu, M.-Y. Jing, L.-T. Xiao, S.-T. Jia, G.-Q. Qin, G.-L. Long, Light Sci. Appl. 5, e16144 (2016) CrossRefGoogle Scholar
  28. 28.
    W. Zhang, D.-S. Ding, Y.-B. Sheng, L. Zhou, B.-S. Shi, G.-C. Guo, Phys. Rev. Lett. 118, 220501 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    C. Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, G.-L. Long, Phys. Rev. A 71, 044305 (2005) ADSCrossRefGoogle Scholar
  30. 30.
    C. Wang, F.-G. Deng, G.-L. Long, Opt. Commun. 253, 15 (2005) ADSCrossRefGoogle Scholar
  31. 31.
    X.-H. Li, C.-Y. Li, F.-G. Deng, P. Zhou, Y.-J. Liang, H.-Y. Zhou, Chin. Phys. 16, 2149 (2007) ADSCrossRefGoogle Scholar
  32. 32.
    G.-L. Long, F.-G. Deng, C. Wang, X.-H. Li, K. Wen, W.-Y. Wang, Front. Phys. China 2, 251 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    B.-C. Ren, H.-R. Wei, M. Hua, T. Li, F.-G. Deng, Eur. Phys. J. D 67, 30 (2013) ADSCrossRefGoogle Scholar
  34. 34.
    T.-J. Wang, T. Li, F.-F. Du, F.-G. Deng, Chin. Phys. Lett. 28, 040305 (2011) ADSCrossRefGoogle Scholar
  35. 35.
    F. Gao, Q.-Y. Wen, F.-C. Zhu, Chin. Phys. B 17, 3189 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    F. Gao, S.-J. Qin, F.-Z. Guo, Q.-Y. Wen, Chin. Phys. Lett. 28, 020303 (2011) ADSCrossRefGoogle Scholar
  37. 37.
    F. Gao, S.-J. Qin, Q.-Y. Wen, F.-C. Zhu, Opt. Commun. 283, 192 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    B. Liu, F. Gao, W. Huang, Q.Y. Wen, Quantum Inf. Process. 12, 1797 (2013) ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    W. Huang, Q.-Y. Wen, B. Liu, F. Gao, Quantum Inf. Process. 13, 649 (2014) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Y.-H. Chou, G.-J. Zeng, Z.-H. Chang, S.-Y. Kuo, Sci. Rep. 8, 4633 (2018) ADSCrossRefGoogle Scholar
  41. 41.
    F. Gao, B. Liu, W. Huang, Q.-Y. Wen, IEEE J. Sel. Top. Quant. 21, 98 (2015) CrossRefGoogle Scholar
  42. 42.
    B. Liu, F. Gao, W. Huang, Q.Y. Wen, Sci. China Phys. Mech. Astron. 58, 100301 (2015) CrossRefGoogle Scholar
  43. 43.
    C.-Y. Wei, T.-Y. Wang, F. Gao, Phys. Rev. A 93, 042318 (2016) ADSCrossRefGoogle Scholar
  44. 44.
    C.-Y. Wei, F. Gao, Q.-Y. Wen, T.-Y. Wang, Sci. Rep. 4, 7537 (2014) CrossRefGoogle Scholar
  45. 45.
    C.-Y. Wei, X.-Q. Cai, B. Liu, T.-Y. Wang, F. Gao, IEEE Trans. Comput. 67, 2 (2018) MathSciNetCrossRefGoogle Scholar
  46. 46.
    A.C. Yao, Protocols for secure computations, in Proceedings of the 23rd Annual Symposium on Computer Science, Chicago, 1982, p. 160 Google Scholar
  47. 47.
    Y.-G. Yang, Q.-Y. Wen, J. Phys. A Math. Theor. 42, 055305 (2009) ADSCrossRefGoogle Scholar
  48. 48.
    H.-Y. Tseng, J. Lin, T. Hwang, Quantum Inf. Process. 11, 373 (2012) MathSciNetCrossRefGoogle Scholar
  49. 49.
    W. Liu, Y.-B. Wang, Z.-T. Jiang, Opt. Commun. 284, 3160 (2011) ADSCrossRefGoogle Scholar
  50. 50.
    W. Huang, Q.-Y. Wen, B. Liu, F. Gao, Y. Sun, Sci. China Phys. Mech. Astron. 56, 1670 (2013) ADSCrossRefGoogle Scholar
  51. 51.
    Z.-W. Sun, D.-Y. Long, Int. J. Theor. Phys. 52, 212 (2013) MathSciNetCrossRefGoogle Scholar
  52. 52.
    J. Li, H.-F. Zhou, L. Jia, T.-T. Zhang, Int. J. Theor. Phys. 53, 2167 (2014) CrossRefGoogle Scholar
  53. 53.
    Y. Chang, W.-B. Zhang, S.-B. Zhang, H.-C. Wang, L.-L. Yan, G.-H. Han, Z.-W. Sheng, Y.-Y. Huang, W. Suo, J.-X. Xiong, Commun. Theor. Phys. 66, 621 (2016) ADSCrossRefGoogle Scholar
  54. 54.
    T.-Y. Ye, Commun. Theor. Phys. 67, 147 (2017) ADSCrossRefGoogle Scholar
  55. 55.
    O. Pfister, Nat. Photonics 9, 483 (2015) ADSCrossRefGoogle Scholar
  56. 56.
    F.-G. Deng, B.-C. Ren, X.-H. Li, Sci. Bull. 62, 46 (2017) CrossRefGoogle Scholar
  57. 57.
    Y.-B. Sheng, F.-G. Deng, G.-L. Long, Phys. Rev. A 82, 032318 (2010) ADSCrossRefGoogle Scholar
  58. 58.
    B.-C. Ren, H.-R. Wei, M. Hua, T. Li, F.-G. Deng, Opt. Express 20, 24664 (2012) ADSCrossRefGoogle Scholar
  59. 59.
    T.-J. Wang, Y. Lu, G.-L. Long, Phys. Rev. A 86, 042337 (2012) ADSCrossRefGoogle Scholar
  60. 60.
    X.-H. Li, S. Ghose, Phys. Rev. A 93, 022302 (2016) ADSCrossRefGoogle Scholar
  61. 61.
    G.-Y. Wang, Q. Ai, B.-C. Ren, T. Li, F.-G. Deng, Opt. Express 24, 28444 (2016) ADSCrossRefGoogle Scholar
  62. 62.
    Q. Liu, G.-Y. Wang, Q. Ai, M. Zhang, F.-G. Deng, Sci. Rep. 6, 22016 (2016) ADSCrossRefGoogle Scholar
  63. 63.
    P. Wang, W. Fan, M. Chen, O. Pfister, N.-C. Menicucci, Engineering large-scale entanglement in the quantum optical frequency comb, in 2015 IEEE Conference on In Lasers and Electro-Optics (CLEO), San Jose, 2015, p. 1 Google Scholar
  64. 64.
    B.-C. Ren, H.-R. Wei, F.-G. Deng, Laser Phys. Lett. 10, 095202 (2013) ADSCrossRefGoogle Scholar
  65. 65.
    B.-C. Ren, F.-G. Deng, Sci. Rep. 4, 4623 (2014) CrossRefGoogle Scholar
  66. 66.
    B.-C. Ren, G.-Y. Wang, F.-G. Deng, Phys. Rev. A 91, 032328 (2015) ADSCrossRefGoogle Scholar
  67. 67.
    T. Li, G.-L. Long, Phys. Rev. A 94, 022343 (2016) ADSCrossRefGoogle Scholar
  68. 68.
    B.-C. Ren, F.-G. Deng, Opt. Express 25, 10863 (2017) ADSCrossRefGoogle Scholar
  69. 69.
    H.-R. Wei, F.-G. Deng, G.-L. Long, Opt. Express 24, 18619 (2016) ADSCrossRefGoogle Scholar
  70. 70.
    T.-J. Wang, Y. Zhang, C. Wang, Laser Phys. Lett. 11, 025203 (2014) ADSCrossRefGoogle Scholar
  71. 71.
    R.-N. Alexander, P. Wang, N. Sridhar, M. Chen, O. Pfister, N.-C. Menicucci, Phys. Rev. A 94, 032327 (2016) ADSCrossRefGoogle Scholar
  72. 72.
    W. Fan, P. Wang, O. Pfister, Broadband quasiphasematching for large-scale entanglement in quantum optical frequency combs, in CLEO: 2014, OSA Technical Digest (Optical Society of America, Washington, DC, 2014) paper JW2A.126 Google Scholar
  73. 73.
    M. Chen, N.-C. Menicucci, O. Pfister, Phys. Rev. Lett. 112, 120505 (2014) ADSCrossRefGoogle Scholar
  74. 74.
    M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, O. Pfister, Phys. Rev. Lett. 107, 030505 (2011) ADSCrossRefGoogle Scholar
  75. 75.
    Y.-B. Sheng, F.-G. Deng, Phys. Rev. A 81, 032307 (2010) ADSCrossRefGoogle Scholar
  76. 76.
    Y.-B. Sheng, F.-G. Deng, Phys. Rev. A 82, 044305 (2010) ADSCrossRefGoogle Scholar
  77. 77.
    Y.-B. Sheng, L. Zhou, Sci. Rep. 5, 7815 (2015) CrossRefGoogle Scholar
  78. 78.
    F.-G. Deng, Phys. Rev. A 83, 062316 (2011) ADSCrossRefGoogle Scholar
  79. 79.
    T.-J. Wang, S.-Y. Song, G.-L. Long, Phys. Rev. A 85, 062311 (2012) ADSCrossRefGoogle Scholar
  80. 80.
    B.-C. Ren, F.-F. Du, F.-G. Deng, Phys. Rev. A 88, 012302 (2013) ADSCrossRefGoogle Scholar
  81. 81.
    B.-C. Ren, G.-L. Long, Opt. Express 22, 6547 (2014) ADSCrossRefGoogle Scholar
  82. 82.
    X. Li, S. Ghose, Laser Phys. Lett. 11, 125201 (2014) ADSCrossRefGoogle Scholar
  83. 83.
    B.-C. Ren, G.-L. Long, Sci. Rep. 5, 16444 (2015) ADSCrossRefGoogle Scholar
  84. 84.
    H.-J. Liu, Y. Xia, J. Song, Quantum Inf. Process. 15, 2033 (2016) ADSMathSciNetCrossRefGoogle Scholar
  85. 85.
    L. Zhou, Y.-B. Sheng, Opt. Commun. 313, 217 (2014) ADSCrossRefGoogle Scholar
  86. 86.
    Y.-B. Sheng, L. Zhou, L. Wang, S.-M. Zhao, Quantum Inf. Process. 12, 1885 (2013) ADSCrossRefGoogle Scholar
  87. 87.
    Y.-B. Sheng, L. Zhou, Entropy 15, 1776 (2013) ADSMathSciNetCrossRefGoogle Scholar
  88. 88.
    Y.-B. Sheng, L. Zhou, J. Opt. Soc. Am. B 30, 678 (2013) ADSCrossRefGoogle Scholar
  89. 89.
    B.-C. Ren, F.-F. Du, F.-G. Deng, Phys. Rev. A 90, 052309 (2014) ADSCrossRefGoogle Scholar
  90. 90.
    F.-F. Du, T. Li, G.-L. Long, Ann. Phys. 375, 105 (2016) ADSCrossRefGoogle Scholar
  91. 91.
    Y.-B. Sheng, L. Zhou, G.L. Long, Phys. Rev. A 88, 022302 (2013) ADSCrossRefGoogle Scholar
  92. 92.
    D. Patrick, T. Calarco, S. Montangero, Phys. Rev. Lett. 106, 190501 (2011) CrossRefGoogle Scholar
  93. 93.
    D. Burgarth, K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.-B. Plenio, Phys. Rev. A 81, 040303 (2010) ADSCrossRefGoogle Scholar
  94. 94.
    S. Hoyer, F. Caruso, S. Montangero, M. Sarovar, T. Calarco, M.-B. Plenio, K.-B. Whaley, New J. Phys. 16, 045007 (2014) ADSCrossRefGoogle Scholar
  95. 95.
    V. Siddhu, Quantum Inf. Process. 14, 3005 (2015) ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    R. Ceccarelli, G. Vallone, F.-D. Martini, P. Mataloni, A. Cabello, Phys. Rev. Lett. 103, 160401 (2009) ADSCrossRefGoogle Scholar
  97. 97.
    C.-Y. Li, H.-Y. Zhou, Y. Wang, F.-G. Deng, Chin. Phys. Lett. 22, 1049 (2005) ADSCrossRefGoogle Scholar
  98. 98.
    F. Gao, S.-J. Qin, Q.-Y. Wen, F.-C. Zhu, Quantum Inf. Comput. 7, 329 (2007) MathSciNetGoogle Scholar
  99. 99.
    T. Chaneliere, D.-N. Matsukevich, S.-D. Jenkins, S.-Y. Lan, T.-A.B. Kennedy, A. Kuzmich, Nature 438, 833 (2005) ADSCrossRefGoogle Scholar
  100. 100.
    A.-I. Lvovsky, B.-C. Sanders, W. Tittel, Nat. Photonics 3, 706 (2009) ADSCrossRefGoogle Scholar
  101. 101.
    D.-S. Ding, Raman quantum memory of photonic polarized entanglement, in Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles (Springer, Singapore, 2018), p. 91 Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information Science and Technology, Beijing Normal UniversityBeijingP.R. China

Personalised recommendations