Advertisement

Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation

  • Ying-Yen LiaoEmail author
  • Sheng-Rui Jian
  • Jia-Ren Lee
Regular Article
  • 40 Downloads

Abstract

The dynamic entanglement of three polar molecules with two-dimensional rotations is investigated under the influence of an electric field and intrinsic decoherence. The parameters of the electric field, such as strength and orientation, are tuned to tailor the rotational properties of the molecules. Due to the two-dimensional rotation and its dipole–dipole interaction, a mechanism of two-molecule transition occurs and leads to specific quantum states in the tripartite system. The components of the states are analyzed by varying the symmetry of the molecular arrangement. We evaluate the negativity to probe the entanglement characteristics of the system. The negativity shows distinct oscillating features for initial GHZ, W, and inverted-W states. These features are suppressed and eventually smoothed in the presence of intrinsic decoherence. We further analyze the contribution of the quantum states to the entanglement. Due to specific selection rules, only two of the states are found to dominate the evolution of the negativity. Among the three cases, the system based on the inverted-W state evolves with the lowest loss of entanglement.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    W. Dür, H.-J. Briegel, Phys. Rev. Lett. 90, 067901 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992) ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    A. Vaziri, G. Weihs, A. Zeilinger, Phys. Rev. Lett. 89, 240401 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    R. Reichle, D. Leibfried, E. Knill, J. Britton, R.B. Blakestad, J.D. Jost, C. Langer, R. Ozeri, S. Seidelin, D.J. Wineland, Nature (London) 443, 838 (2006) ADSCrossRefGoogle Scholar
  8. 8.
    M. Steffen, M. Ansmann, R.C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E.M. Weig, A.N. Cleland, J.M. Martinis, Science 313, 1423 (2006) ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Dür, G. Vidal, J.I. Cirac, Phys. Rev. A 62, 062314 (2000) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    T.C. Wei, P.M. Goldbart, Phys. Rev. A 68, 042307 (2003) ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Akhtarshenas, J. Phys. A 38, 6777 (2005) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, 050301(R) (2006) ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 135, 154102 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    J. Zhu, S. Kais, Q. Wei, D. Herschbach, B. Friedrich, J. Chem. Phys. 138, 024104 (2013) ADSCrossRefGoogle Scholar
  17. 17.
    E. Charron, P. Milman, A. Keller, O. Atabek, Phys. Rev. A 75, 033414 (2007) ADSCrossRefGoogle Scholar
  18. 18.
    K. Mishima, K. Yamashita, J. Chem. Phys. 130, 034108 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    K. Mishima, K. Yamashita, Chem. Phys. 361, 106 (2009) CrossRefGoogle Scholar
  20. 20.
    Q. Wei, S. Kais, B. Friedrich, D. Herschbach, J. Chem. Phys. 134, 124107 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    Z.Y. Zhang, J.M. Liu, Sci. Rep. 7, 17822 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    J.X. Han, Y. Hu, Y. Jin, G.F. Zhang, J. Chem. Phys. 144, 134308 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    Y.J. Li, J.M. Liu, Acta Phys. Sin. 63, 200302 (2014) Google Scholar
  24. 24.
    Y.Y. Liao, Eur. Phys. J. D 71, 277 (2017) ADSCrossRefGoogle Scholar
  25. 25.
    H. Yu, T.S. Ho, H. Rabitz, Phys. Chem. Chem. Phys. 20, 13008 (2018) CrossRefGoogle Scholar
  26. 26.
    I.Sh. Averbukh, R. Arvieu, Phys. Rev. Lett. 87, 163601 (2001) ADSCrossRefGoogle Scholar
  27. 27.
    B. Schmidt, B. Friedrich, Front. Phys. 2, 37 (2014) CrossRefGoogle Scholar
  28. 28.
    J. Floß, I.Sh. Averbukh, Phys. Rev. E 91, 052911 (2015) ADSCrossRefGoogle Scholar
  29. 29.
    A. Shukla, S. Keshavamurthy, J. Chem. Sci. 129, 1005 (2017) CrossRefGoogle Scholar
  30. 30.
    H. Shima, T. Nakayama, Phys. Rev. A 70, 013401 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    Y.T. Shih, Y.Y. Liao, D.S. Chuu, Phys. Rev. B 68, 075402 (2003) ADSCrossRefGoogle Scholar
  32. 32.
    C.G. Shen, G.F. Zhang, K.M. Fan, H.J. Zhu, Chin. Phys. B 23, 050310 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Fan, G.F. Zhang, Eur. Phys. J. D 68, 163 (2014) ADSCrossRefGoogle Scholar
  34. 34.
    L. Zheng, G.F. Zhang, Eur. Phys. J. D 71, 288 (2017) ADSCrossRefGoogle Scholar
  35. 35.
    G.J. Milburn, Phys. Rev. A 44, 5401 (1991) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    J.B. Xu, X.B. Zou, J.H. Yu, Eur. Phys. J. D 10, 295 (2000) ADSCrossRefGoogle Scholar
  37. 37.
    C. Sabin, G. Garcia-Alcaine, Eur. Phys. J. D 48, 435 (2008) ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    K. von Meyenn, Z. Phys. 231, 154 (1970) ADSCrossRefGoogle Scholar
  39. 39.
    J.E. van den Berg, S.C. Mathavan, C. Meinema, J. Nauta, T.H. Nijbroek, K. Jungmann, H.L. Bethlem, S. Hoekstra, J. Mol. Spectr. 300, 22 (2014) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsNational University of KaohsiungKaohsiungTaiwan
  2. 2.Department of Materials Science and EngineeringI-Shou UniversityKaohsiungTaiwan
  3. 3.Department of PhysicsNational Kaohsiung Normal UniversityKaohsiungTaiwan

Personalised recommendations