Advertisement

Renormalization of radiobiological response functions by energy loss fluctuations and complexities in chromosome aberration induction: deactivation theory for proton therapy from cells to tumor control

  • Ramin AbolfathEmail author
  • Yusuf Helo
  • Lawrence Bronk
  • Alejandro Carabe
  • David Grosshans
  • Radhe Mohan
Regular Article

Abstract

We employ a multi-scale mechanistic approach built upon our recent phenomenological/computational methodologies [R. Abolfath et al., Sci. Rep. 7, 8340 (2017)] to investigate radiation induced cell toxicities and deactivation mechanisms as a function of linear energy transfer in hadron therapy. Our theoretical model consists of a system of Markov chains in microscopic and macroscopic spatio-temporal landscapes, i.e., stochastic birth-death processes of cells in millimeter-scale colonies that incorporates a coarse-grained driving force to account for microscopic radiation induced damage. The coupling, hence the driving force in this process, stems from a nano-meter scale radiation induced DNA damage that incorporates the enzymatic end-joining repair and mis-repair mechanisms. We use this model for global fitting of the high-throughput and high accuracy clonogenic cell-survival data acquired under exposure of the therapeutic scanned proton beams, the experimental design that considers γ-H2AX as the biological endpoint and exhibits maximum observed achievable dose and LET, beyond which the majority of the cells undergo collective biological deactivation processes. An estimate to optimal dose and LET calculated from tumor control probability by extension to ~106 cells per mm-size voxels is presented. We attribute the increase in degree of complexity in chromosome aberration to variabilities in the observed biological responses as the beam linear energy transfer (LET) increases, and verify consistency of the predicted cell death probability with the in vitro cell survival assay of approximately 100 non-small cell lung cancer (NSCLC) cells. The present model provides an interesting interpretation to variabilities in α and β indices via perturbative expansion of the cell survival fraction (SF) in terms of specific and lineal energies, z and y, corresponding to continuous transitions in pair-wise to ternary, quaternary and more complex recombination of broken chromosomes from the entrance to the end of the range of proton beam.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    E.J. Hall, A.J. Giaccia, Radiobiology for the Radiologist, 6th edn. (Lippincott Williams & Wilkins, Philadelphia, 2006) Google Scholar
  2. 2.
    D.R. Olsen, O.S. Bruland, G. Frykholm, I.N. Nordergaug, Radiother. Oncol. 83, 123 (2007) CrossRefGoogle Scholar
  3. 3.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010) CrossRefGoogle Scholar
  4. 4.
    M. Durante, H. Paganetti, Rep. Prog. Phys. 79, 096702 (2016) CrossRefGoogle Scholar
  5. 5.
    S.M. MacDonald, T.F. Delaney, J.S. Loefïer, Cancer Investig. 24, 199 (2006) CrossRefGoogle Scholar
  6. 6.
    R.M. Abolfath, D.J. Carlson, Z. Chen, R. Nath, Phys. Med. Biol. 58, 7143 (2013) CrossRefGoogle Scholar
  7. 7.
    M. Toulemonde, E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 80, 031913 (2009) CrossRefGoogle Scholar
  8. 8.
    E. Surdutovich, A.V. Solov’yov, Phys. Rev. E 82, 051915 (2010) CrossRefGoogle Scholar
  9. 9.
    A.V. Solov’yov, ed., Nanoscale Insights into Ion-Beam Cancer Therapy (Springer, 2017) Google Scholar
  10. 10.
    E. Surdutovich, A.V. Solov’yov, Eur. Phys. J. D 68, 353 (2014) CrossRefGoogle Scholar
  11. 11.
    A. Verkhovtsev, E. Surdutovich, A.V. Solov’yov, Sci. Rep. 6, 27654 (2015) CrossRefGoogle Scholar
  12. 12.
    V.S.K. Manem, M. Kohandel, D.C. Hodgson, M.B. Sharpe, S. Sivaloganathan, Int. J. Radiat. Biol. 91, 209 (2015) CrossRefGoogle Scholar
  13. 13.
    F. Guan, L. Bronk, U. Titt, S.H. Lin, D. Mirkovic, M.D. Kerr, X.R. Zhu, J. Dinh, M. Sobieski, C. Stephan, C.R. Peeler, R. Taleei, R. Mohan, D.R. Grosshans, Sci. Rep. 5, 9850 (2015) CrossRefGoogle Scholar
  14. 14.
    J.J. Butts, R. Katz, Radiat. Res. 30, 855 (1967) CrossRefGoogle Scholar
  15. 15.
    R. Katz et al., Radiat. Res. 47, 402 (1971) CrossRefGoogle Scholar
  16. 16.
    G. Kraft, Part. Nucl. Phys. 45, S473 (2000) CrossRefGoogle Scholar
  17. 17.
    H. Paganetti, M. Goitein, Int. J. Radiat. Biol. 77, 911 (2001) CrossRefGoogle Scholar
  18. 18.
    T. Elsasser et al., Int. J. Radiat. Oncol. Biol. Phys. 78, 1177 (2010) CrossRefGoogle Scholar
  19. 19.
    R.B. Hawkins, Med. Phys. 25, 1157 (1998) CrossRefGoogle Scholar
  20. 20.
    R.B. Hawkins, Radiat. Res. 160, 61 (2003) CrossRefGoogle Scholar
  21. 21.
    Y. Kase et al., Radiat. Res. 166, 629 (2006) CrossRefGoogle Scholar
  22. 22.
    M. Krämer, O. Jakel, T. Haberer, G. Kraft, D. Schardt, U. Weber, Phys. Med. Biol. 45, 3299 (2000) CrossRefGoogle Scholar
  23. 23.
    M. Krämer, M.M. Scholz, Phys. Med. Biol. 45, 3319 (2000) CrossRefGoogle Scholar
  24. 24.
    M. Scholz, A.M. Kellerer, W. Kraft-Weyrather, G. Kraft, Radiat. Environ. Biophys. 36, 59 (1997) CrossRefGoogle Scholar
  25. 25.
    W.K. Weyrather, S. Ritter, M. Scholz, G. Kraft, Int. J. Radiat. Biol. 75, 1357 (1999) CrossRefGoogle Scholar
  26. 26.
    J.J. Wilkens, U. Oelfke, Phys. Med. Biol. 49, 2811 (2004) CrossRefGoogle Scholar
  27. 27.
    G.J. Neary, Int. J. Radiat. Biol. 9, 477 (1965) Google Scholar
  28. 28.
    O. Steinsträter, U. Scholz, T. Friedrich, M. Krämer, R. Grün, M. Durante, M. Scholz, Phys. Med. Biol. 60, 6811 (2015) CrossRefGoogle Scholar
  29. 29.
    A.L. McNamara, J. Schuemann, H. Paganetti, Phys. Med. Biol. 60, 8399 (2015) CrossRefGoogle Scholar
  30. 30.
    S.B. Curtis, Radiat. Res. 106, 252 (1986) CrossRefGoogle Scholar
  31. 31.
    R.K. Sachs, P. Hahnfeldt, D.J. Brenner, Int. J. Radiat. Biol. 72, 351 (1997) CrossRefGoogle Scholar
  32. 32.
    O. Steinstrater, R. Grun, U. Scholz, T. Friedrich, M. Durante, M. Scholz, Int. J. Radiat. Oncol. Biol. Phys. 84, 854 (2012) CrossRefGoogle Scholar
  33. 33.
    D.J. Carlson, R.D. Stewart, V.A. Semenenko, G.A. Sandison, Radiat. Res. 169, 447 (2008) CrossRefGoogle Scholar
  34. 34.
    M.C. Frese, V.K. Yu, R.D. Stewart, D.J. Carlson, Int. J. Radiat. Oncol. Biol. Phys. 83, 442 (2012) CrossRefGoogle Scholar
  35. 35.
    R.D. Stewart, S.W. Streitmatter, D.C. Argento, C. Kirkby, J.T. Goorley, G. Moffitt, T. Jevremovic, G.A. Sandison, Phys. Med. Biol. 60, 8249 (2015) CrossRefGoogle Scholar
  36. 36.
    R. Mohan, C.R. Peeler, F. Guan, L. Bronk, W. Cao, D.R. Grosshans, Acta Oncol. 56, 1367 (2017) CrossRefGoogle Scholar
  37. 37.
    R.M. Abolfath, A.C.T. van Duin, T. Brabec, J. Phys. Chem. A 115, 11045 (2011). See the real-time simulations and movies at: https://doi.org/qmsimulator.wordpress.com/ CrossRefGoogle Scholar
  38. 38.
    R. Abolfath, L. Bronk, Y. Helo, J. Schuemann, U. Titt, D. Grosshans, R. Mohan, Med. Phys. 43, 3842 (2016) CrossRefGoogle Scholar
  39. 39.
    W. Friedland, E. Schmitt, P. Kundrat, M. Dingfelder, G. Baiocco, S. Barbieri, A. Ottolenghi, Sci. Rep. 7, 45161 (2017) CrossRefGoogle Scholar
  40. 40.
    S. Meylan, S. Incerti, M. Karamitros, N. Tang, M. Bueno, I. Clairand, C. Villagrasa, Sci. Rep. 7, 11923 (2017) CrossRefGoogle Scholar
  41. 41.
    R. Abolfath, C.R. Peeler, M. Newpower, L. Bronk, D. Grosshans, R. Mohan, Sci. Rep. 7, 8340 (2017) CrossRefGoogle Scholar
  42. 42.
    P. Kundrat, M. Lokajicek, H. Hromcikova, Phys. Med. Biol. 50, 1433 (2005) CrossRefGoogle Scholar
  43. 43.
    P. Kundrat, Phys. Med. Biol. 51, 1185 (2006) CrossRefGoogle Scholar
  44. 44.
    H. Nikjoo, D. Emfietzoglou, T. Liamsuwan, R. Taleei, D. Liljequist, S. Uehara, Rep. Prog. Phys. 79, 116601 (2016) CrossRefGoogle Scholar
  45. 45.
    W. Friedland, M. Dingfelder, P. Kundrat, P. Jacob, Mutat. Res. 28, 711 (2011) Google Scholar
  46. 46.
    R.K. Sachs, D.J. Brenner, A.M. Chen, P. Hahnfeldt, L.R. Hlatky, Radiat. Res. 148, 330 (1997) CrossRefGoogle Scholar
  47. 47.
    F. Ballarini, A. Ottolenghi, Cytogenet. Genome Res. 104, 149 (2004) CrossRefGoogle Scholar
  48. 48.
    W. Friedland, P. Jacob, P. Kundrat, Radiat. Res. 173, 677 (2010) CrossRefGoogle Scholar
  49. 49.
    W. Friedland, P. Kundrat, Mutat. Res. 756, 213 (2013) CrossRefGoogle Scholar
  50. 50.
    A.M. Kellerer, H.H. Rossi, Curr. Top. Radiat. Res. Q. 8, 85 (1972) Google Scholar
  51. 51.
    S. Incerti et al., Int. J. Modell. Simul. Sci. Comput. 1, 157 (2010) CrossRefGoogle Scholar
  52. 52.
    F. Mandl, G. Shaw, Quantum Field Theory, 2nd edn. (Wiley, 2013) Google Scholar
  53. 53.
    R.P. Virsik, D. Harder, Radiat. Res. 85, 13 (1981) CrossRefGoogle Scholar
  54. 54.
    E. Gudowska-Nowak, S. Ritter, G. Taucher-Scholz, G. Kraft, Acta Phys. Pol. B 31, 1109 (2000) Google Scholar
  55. 55.
    N. Albright, Radiat. Res. 118, 1 (1989) CrossRefGoogle Scholar
  56. 56.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 3rd edn. (Amsterdam, North-Holland, 2007) Google Scholar
  57. 57.
    J.W. Negele, H. Orland, in Quantum Many-particle Systems, Frontiers in Physics Series (Addison Wesley, 1987), Vol. 68 Google Scholar
  58. 58.
    P. Ramond, in Field Theory: A Modern Primer, Frontiersin Physics Series (Addison Wesley 1990), Vol. 74 Google Scholar
  59. 59.
    M. Kardar, Statistical Physics of Fields (Cambridge, 2007) Google Scholar
  60. 60.
    R.M. Abolfath, Phys. Rev. B 58, 2013 (1998) CrossRefGoogle Scholar
  61. 61.
    H.H. Rossi, M. Zaider, Microdosimetry and Its Applications (Springer, 1996) Google Scholar
  62. 62.
    A.M. Kellerer, Fundamentals of microdosimetry, in The Dosimetry of Ionizing Radiation, edited by K.R. Kase et al. (Academic, London, 1985), Vol. 1, pp. 77–161 Google Scholar
  63. 63.
    J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Pearson, 2014) Google Scholar
  64. 64.
    O.N. Vassiliev, Int. J. Radiat. Oncol. Biol. Phys. 83, 1311 (2012) CrossRefGoogle Scholar
  65. 65.
    O.N. Vassiliev, D.R. Grosshans, R. Mohan, Phys. Med. Biol. 62, 8041 (2017) CrossRefGoogle Scholar
  66. 66.
    L.D.J. Landau, J. Phys. (USSR) 8, 482 (1944) Google Scholar
  67. 67.
    P.V. Vavilov, Sov. Phys. JETP 5, 749 (1957) Google Scholar
  68. 68.
    S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250 (2003) CrossRefGoogle Scholar
  69. 69.
    A.M. Kellerer, D. Chmelevsky, Radiat. Environ. Biophys. 12, 205 (1975) CrossRefGoogle Scholar
  70. 70.
    B. Grosswendt, Radiat. Prot. Dosim. 115, 1 (2005) CrossRefGoogle Scholar
  71. 71.
    M.A. Cortes-Giraldo, A. Carabe, Phys. Med. Biol. 60, 2645 (2015) CrossRefGoogle Scholar
  72. 72.
    M. Zaider, G.N. Minerbo, Phys. Med. Biol. 45, 279 (2000) CrossRefGoogle Scholar
  73. 73.
    L.E. Reichl, A Modern Course in Statistical Physics, 4th edn. (Wiley-, Verlag, 2009) Google Scholar
  74. 74.
    L.D. Landau, E.M. Lifshitz, Mechanics, in A Course of Theoretical Physics (Pergamon Press, 1969), Vol. 1 Google Scholar
  75. 75.
    H. Akima, U.S. Department of Commerce, Office of Telecommunications, 1975 Google Scholar
  76. 76.
    L. Bronk et al., Med. Phys. 44, 2670 (2017) Google Scholar
  77. 77.
    H. Akima, J. ACM 17, 589 (1970) CrossRefGoogle Scholar
  78. 78.
    W. Tinganelli, M. Durante, R. Hirayama, M. Krämer, A. Maier, W. Kraft-Weyrather, Y. Furusawa, T. Friedrich, E. Scifoni, Sci. Rep. 5, 17016 (2015) CrossRefGoogle Scholar
  79. 79.
    M. Krämer, E. Scifoni, F. Schmitz, O. Sokol, M. Durante, Eur. Phys. J. D 68, 306 (2014) CrossRefGoogle Scholar
  80. 80.
    N. Bassler, J. Toftegaard, A. Lühr, B.S. Sorensen, E. Scifoni, M. Krämer, O. Jäkel, L.S. Mortensen, J. Overgaard, J.B. Petersen, Acta Oncol. 53, 25 (2014) CrossRefGoogle Scholar
  81. 81.
    F. Guan, C. Peeler, L. Bronk, C. Geng, R. Taleei, S. Randeniya, S. Ge, D. Mirkovic, D. Grosshans, R. Mohan, U. Titt, Med. Phys. 42, 6234 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ramin Abolfath
    • 1
    • 2
    • 3
    Email author
  • Yusuf Helo
    • 4
    • 5
  • Lawrence Bronk
    • 1
  • Alejandro Carabe
    • 2
  • David Grosshans
    • 1
  • Radhe Mohan
    • 1
  1. 1.Department of Radiation Physics and OncologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Radiation OncologyUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Therapeutic RadiologyYale University School of MedicineNew HavenUSA
  4. 4.Invicro, A Konica Minolta CompanyLondonUK
  5. 5.Centre for Medical Image Computing and Department of Computer Science, University College LondonLondonUK

Personalised recommendations