Advertisement

A model of quantum collapse induced by gravity

  • Franck LaloëEmail author
Regular Article

Abstract

We discuss a model where a spontaneous quantum collapse is induced by the gravitational interactions, treated classically. Its dynamics couples the standard wave function of a system with the Bohmian positions of its particles, which are considered as the only source of the gravitational attraction. The collapse is obtained by adding a small imaginary component to the gravitational coupling. It predicts extremely small perturbations of microscopic systems, but very fast collapse of QSMDS (quantum superpositions of macroscopically distinct quantum states) of a solid object, varying as the fifth power of its size. The model does not require adding any dimensional constant to those of standard physics.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    A.J. Leggett, Macroscopic quantum systems and the quantum theory of measurement, Suppl. Prog. Theor. Phys. 69, 80 (1980)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A.J. Leggett, Probing quantum mechanics towards the everyday world: where do we stand, Phys. Scr. T102, 80 (2002)CrossRefGoogle Scholar
  3. 3.
    E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenchaften 23, 807 (1935); see also [4]ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    J.D. Trimmer, The present situation in quantum mechanics: a translation of Schrödinger’s cat paradox paper, Proc. Am. Phys. Soc. 124, 323 (1980)Google Scholar
  5. 5.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)Google Scholar
  6. 6.
    J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, 1955)Google Scholar
  7. 7.
    L. Diosi, A universal master equation for the gravitational violations of quantum mechanics, Phys. Lett. 120, 377 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Diosi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    G.C. Ghirardi, R. Grassi, A. Rimini, Continuous-spontaneous-reduction models involving gravity, Phys. Rev. A 42, 1057 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    P. Pearle, E. Squires, Gravity, energy conservation, and parameter values in collapse models, Found. Phys. 26, 291 (1996)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Penrose, On gravity’s role in quantum state reduction, Gen. Relativ. Gravitation 28, 581 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    L. Diosi, Gravity related spontaneous wave function collapse in bulk matter, New J. Phys. 16, 105006 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    A. Tilloy, L. Diosi, Sourcing semiclassical gravity from spontaneously localized quantum matter, Phys. Rev. D 93, 024026 (2016)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    S.L. Adler, Gravitation and the noise needed in objective reduction models, in Quantum nonlocality and reality: 50 years of Bell’s theorem, edited by M. Bell, S. Gao, (Cambridge University Press, 2016)Google Scholar
  15. 15.
    G. Gasbarri, M. Toros, S. Donadi, A. Bassi, Gravity induced wave function collapse, Phys. Rev. D 96, 104013 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A. Bassi, K. Lochan, S. Satin, T. Singh, H. Ulbricht, Models of wave function collapse, underlying theories, and experimental tests, Rev. Mod. Phys. 85, 471 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    T.P. Singh, Possible role of gravity in collapse of the wave-function: a brief survey of some ideas, J. Phys.: Conf. Ser. 626, 012009 (2015)Google Scholar
  18. 18.
    L. de Broglie, La mécanique ondulatoire et la structure atomique de la matière et du rayonnement, J. Phys. Radium 8, 225 (1927)zbMATHCrossRefGoogle Scholar
  19. 19.
    D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev. 85, 166 (1952)ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    P. Holland, The Quantum Theory of Motion (Cambridge University Press, 1993)Google Scholar
  21. 21.
    G. Bacchiagaluppi, A. Valentini, Quantum theory at the crossroads: reconsidering the 1927 Solvay conference (Cambridge University Press, 2009)Google Scholar
  22. 22.
    D. Dürr, S. Goldstein, N. Zanghi, Quantum physics without quantum philosophy (Springer, 2013)Google Scholar
  23. 23.
    J. Bricmont, Making sense of quantum mechanics (Springer, 2016)Google Scholar
  24. 24.
    G. Ghirardi, A. Rimini, T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34, 470 (1986)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    P. Pearle, Combining stochastic dynamical state-vector reduction with spontaneous localization, Phys. Rev. A 39, 2277 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    V. Allori, S. Goldstein, R. Tumulka, N. Zhanghi, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory, Br. J. Philos. Sci. 59, 353 (2008) – see in particular Section 7.2MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    D. Bedingham, Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 275303 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    R. Tumulka, Comment on Hidden variable interpretation of spontaneous localization theory, J. Phys. A 44, 478001 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    F. Laloë, Modified Schrödinger dynamics with attractive densities, Eur. Phys. J. D 69, 162 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    F. Laloë, Quantum collapse dynamics with attractive densities, Phys. Rev. A 99, 052111 (2019)ADSCrossRefGoogle Scholar
  31. 31.
    M. Bahrami, A. Grossardt, S. Donadi, A. Bassi, The Schrödinger-Newton equation and its foundations, New J. Phys. 16, 115007 (2014)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    O.V. Prezdho, C. Brooksby, Quantum backreaction through the Bohmian particle, Phys. Rev. Lett. 86, 3215 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    L. Diosi, T.B. Papp, Schrödinger-Newton equation with a complex Newton constant and induced gravity, Phys. Lett. A 373, 3244 (2009)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    A. Valentini, H. Westman, Dynamical origin of quantum probabilities, Proc. Roy. Soc. A 461, 253 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    M.D. Towler, N.J. Russell, A. Valentini, Time scales for dynamical relaxation to the Born rule, Proc. R. Soc. A 468, 990 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    K. Hornberger, S. Gerlich, P. Haslinger, S. Nimmrichter, M. Arndt, Quantum interference of clusters and molecules, Rev. Mod. Phys. 84, 157 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    P.C.E. Stamp, Rationale for a correlated worldline theory of quantum gravity, New. J. Phys. 17, 065017 (2015)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    P.C.E. Stamp, in 4th lecture given at the College de France (Paris, 2016)Google Scholar
  39. 39.
    G. Tastevin, F. Laloë, Surrealistic Bohmian trajectories do not occur with macroscopic pointers, Eur. Phys. J. D 72, 183 (1981)ADSCrossRefGoogle Scholar
  40. 40.
    J.S. Bell, Bertlmann’s socks and the nature of reality, J. Phys. Colloques C2, 41 (1981). [Reprinted in pp. 139–158 of [41]]Google Scholar
  41. 41.
    J.S. Bell, Speakable and Unspeakable in Quantum Mechanics, (Cambridge University Press, 1987); second augmented edition (2004)Google Scholar
  42. 42.
    N. Gisin, Stochastic quantum dynamics and relativity, Helv. Phys. Acta 62, 363 (1989)MathSciNetGoogle Scholar
  43. 43.
    A. Bassi, K. Hejazi, No-faster-than-light-signaling implies linear evolutions. A rederivation, Eur. J. Phys. 36, 055027 (2015)zbMATHCrossRefGoogle Scholar
  44. 44.
    L. Diosi, Nonlinear Schrödinger equation in foundations: summary of 4 catches, J. Phys.: Conf. Ser. 701, 012019 (2016)Google Scholar
  45. 45.
    S. Nimmrichter, K. Hornberger, Stochastic extensions of the regularized Schrödinger-Newton equation, Phys. Rev. D 91, 024016 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    A. Shimony, Events and processes in the quantum world pp. 182–203 in: Quantum concepts in Space and Timeedited by R. Penrose, C. Isham, (Clarendon Press, Oxford, 1986)Google Scholar
  47. 47.
    P. Pearle, E. Squires, Bound state excitation, nucleon decay experiments, and models of wave function collapse, Phys. Rev. Lett. 73, 1 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Ph. Blanchard, A. Jadczyk, A. Ruschhaupt, How events come into being: EEQT, particle tracks, quantum chaos and tunneling time, in Mysteries, Puzzles and Paradoxes in Quantum Mechanics, edited by R. Bonifacio, American Institute of Physics, AIP Conference Proceedings, no. 461 (1999) [J. Mod. Opt. 47, 2247 (2000)]Google Scholar
  49. 49.
    D. Bohm, J. Bub, A proposed solution of the measurement problem in quantum mechanics by hidden variable theory, Rev. Mod. Phys. 38, 453 (1966)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    A. Tilloy, Ghirardi-Rimini-Weber model with massive flashes, Phys. Rev. D 97, 021502 (2017)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    W. Struyve, Semi-classical approximations based on Bohmian mechanics (2015) https://arXiv:1507.04771
  52. 52.
    W. Struyve, Towards a novel approach to semi-classical gravity, in The philosophy of cosmology, edited by K. Chamcham, J. Silk, J.D. Barrow, S. Saunders, (Cambridge University Press, 2017); https://arXiv:1902.02188 (2019)
  53. 53.
    P. Peter, E. Pinho, N. Pinto-Neto, Tensor perturbations in quantum cosmological backgrounds, J. Cosmol. Astropart. Phys. 07, 014 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    P. Peter, E. Pinho, N. Pinto-Neto, Gravitational wave background in perfect fluid quantum cosmologies, Phys. Rev. D 73, 104017 (2006)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    E. Pinho, N. Pinto-Neto, Scalar and vector perturbations in quantum cosmological backgrounds, Phys. Rev. D 76, 023506 (2007)ADSzbMATHCrossRefGoogle Scholar
  56. 56.
    C. Møller, Les théories relativistes de la gravitation (Colloques internationaux du CNRS, Paris, 1959)Google Scholar
  57. 57.
    L. Rosenfeld, On the quantization of fields, Nucl. Phys. 40, 353 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    L. Rosenfeld, in Quantentheorie und Gravitation in Einstein symposium 1965 (Akademie, Berlin 1966) [English translation in page 599 of selected papers of L. Rosenfeld, Boston studies in the philosophy of science, edited by R.S. Cohen, J.J. Stachelin (Reidel, 1979)]Google Scholar
  59. 59.
    K. Eppley, E. Hahhah, The necessity of quantizing the gravitational field, Found. Phys. 7, 51 (1977)ADSCrossRefGoogle Scholar
  60. 60.
    G. Baym, T. Ozawa, Two-slit diffraction with highly charged particles: Niels Bohr’s consistency argument that the electromagnetic field must be quantized, Proc. Nat. Acad. Sci. USA 106, 3035 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    S. Bose, A. Mazumdar, G.W. Morley, H. Ulbricht, M. Toros, M. Paternostro, A.A. Geraci, P.F. Barker, M.S. Kim, G. Milnurn, Spin entanglement witness for quantum gravity, Phys. Rev. Lett. 119, 240401 (2017)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    C. Marletto, V. Vedral, Gravitationnally induced entanglement between two massive particles is sufficient evidence of quantum effects of gravity, Phys. Rev. Lett. 119, 240402 (2017)ADSCrossRefGoogle Scholar
  63. 63.
    A. Belenchia, R.M. Wald, F. Giacomini, E. Castro-Ruiz, C. Brukner, M. Aspelmeyer, Quantum superposition of massive objects and the quantization of gravity, Phys. Rev. D 98, 126009 (2018)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    A. Tilloy, Does gravity have to be quantized? Lessons from non-relativistic toy models, https://arXiv:1903.01823 (2019)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.LKB, ENS-Université PSL, CNRSParisFrance

Personalised recommendations