Controlling a quantum system via its boundary conditions

  • Christian Duffin
  • Arend G. DijkstraEmail author
Open Access
Regular Article


We numerically study a particle in a box with moving walls. In the case where the walls are oscillating sinusoidally with a small amplitude, we show that states up to the fourth state can be populated with more than 80 percent population, while higher lying states can also be selectively excited. This work introduces a way of controlling quantum systems which does not rely on (dipole) selection rules.

Graphical abstract


Quantum Optics 


  1. 1.
    J.F. Haase, Z.Y. Wang, J. Casanova, M.B. Plenio, Phys. Rev. Lett. 121, 050402 (2018).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    M. Bukov, S. Gopalakrishnan, M. Knap, E. Demler, Phys. Rev. Lett. 115, 205301 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    M. Holthaus, J. Phys. B: At. Mol. Opt. Phys. 49, 013001 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    T. Stöferle, H. Moritz, Ch Schori, M. Köhl, T. Esslinger, Phys. Rev. Lett. 92, 130403 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    S.D. Sarkar, R. Sensarma, K. Sengupta, Phys. Rev. B 92, 174529 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    H. Lignier, A. Zenesini, D. Ciampini, O. Morsch, E. Arimondo, S. Montangero, G. Pupillo, R. Fazio, Phys. Rev. A 79, 041601 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    A. Rae, Quantum Physics: a Beginner’s Guide (Oneworld Publications, 2005).Google Scholar
  9. 9.
    D.J. Griffiths, Introduction to Quantum Mechanics (Cambridge University Press, 2018).Google Scholar
  10. 10.
    A. Matzkin, J. Phys. A: Math. Theor. 51, 095303 (2018).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    D.N. Pinder, Am. J. Phys. 58, 54 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    S.W. Doescher, M.H. Rice, Am. J. Phys. 37, 1246 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    V.V. Dodonov, V.I. Manko, D.E. Nikonov, Phys. Lett. A 162, 359 (1992).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    V.V. Dodonov, A.B. Klimov, D.E. Nikonov, J. Math. Phys. 34, 3391 (1993).ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A.J. Makowski, S.T. Dembinski, Phys. Lett. A 154, 217 (1991).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.J. Makowski, J. Phys. A 25, 3419 (1992).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    A.J. Makowski, P. Peplowski, Phys. Lett. A 163, 143 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    K. Cooney, https://arXiv:1703.05282 (2017)
  19. 19.
    L. Tarr, Quantum systems with time-dependent boundaries, Ph.D. thesis, Reed College, 2005.Google Scholar
  20. 20.
    A. Munier, J.R. Burgan, M. Felix, P. Peplowski, J. Math. Phys. 22, 1219 (1981).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    A. Matzkin, S.V. Mousavi, M. Waegell, Phys. Lett. A 382, 3347 (2018).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
  23. 23.
    S. Di Martino, F. Anzà, P. Facchi, A. Kossakowski, G. Marmo, A. Messina, B. Militello, S. Pascazio, J. Phys. A: Math. Theor. 46, 365301 (2015).CrossRefGoogle Scholar
  24. 24.
    M.V. Berry, J. Phys. A 29, 6617 (1996).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    M.V. Berry, Phys. World 14, 39 (2001).ADSCrossRefGoogle Scholar
  26. 26.
    I. Marzoli, F. Saif, I. Bialynicki-Birula, O.M. Friesch, A.E. Kaplan, W.P. Schleich, Acta Phys. Slov. 48, 323 (1998).Google Scholar
  27. 27.
    D.M. Greenberger, Physica B 151, 374 (1988).CrossRefGoogle Scholar
  28. 28.
    F. Anzà, A. Messina, B. Militello, Open Syst. Inf. Dyn. 26, 1950006 (2019).MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Mann, M. Reza Bakhtiari, A. Pelster, M. Thorwart, Phys. Rev. Lett. 120, 063605 (2018).ADSCrossRefGoogle Scholar
  30. 30.
    H.K. Lau, A. Eisfeld, J.M. Rost, https://arXiv:1803.00150 (2018)
  31. 31.
    Y.I. Sohn, S. Meesala, B. Pingault, H.A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stavrakas, M.J. Stanley, A. Sipahigil, J. Choi, M. Zhang, J.L. Pacheco, J. Abraham, E. Bielejec, M.D. Lukin, M. Atatüre, M. Lončar, Nat. Commun. 9, 2012 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    F. Dahms, B.P. Fingerhut, E.T.J. Nibbering, E. Pines, T. Elsaesser, Science 357, 491 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    M. Thämer, L. De Marco, K. Ramasesha, A. Mandal, A. Tokmakoff, Science 350, 78 (2015).ADSCrossRefGoogle Scholar
  34. 34.
    T. Hida, Brownian Motion (Springer-Verlag, 1980).Google Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.The School of Physics and Astronomy, University of LeedsLeedsUK
  2. 2.The School of Chemistry, University of LeedsLeedsUK

Personalised recommendations