Advertisement

Probing the molecular structure and properties of neutral and anionic ground states of SO2 and CO2

  • Irina Jana
  • Sumit Naskar
  • Mousumi DasEmail author
  • Dhananjay NandiEmail author
Regular Article
  • 20 Downloads

Abstract

In this present investigation, the structures of SO2, SO2, CO2 and CO2 as well as the adiabatic electron affinities of the corresponding SO2 and CO2 neutral parents are computed using the infinite-order coupled-cluster method with all singles and doubles and non-iterative inclusion of triple excitations (CCSD(T)) and the Møller–Plesset perturbation theory up to the second order (MP2). The molecular structure, fundamental frequencies with their corresponding intensities and electron localization functions of SO2 and SO2 are interpreted from respective ground-state optimized electronic structures calculated and compared with other simple tri-atomic molecules CO2 and CO2, respectively. The electron localization function are then quantified and the second-order perturbation energies for different oxygen lone pairs (n) to σ* and π* interactions of S–O and C–O bond orbitals have been calculated by carrying out NBO analysis and the results are compared. The change in the electronic structure of the molecule after the attachment of a low-energy (≤15 eV) electron, thus forming a transient negative ion (TNI), can be interpreted from the n → σ* and n → π* interactions. The potential energy curves of SO2–SO2 and CO2– CO2 pairs are calculated as a function of S–O and C–O bond distance and bending angle. The adiabatic electron affinity of SO2 is calculated to be positive while that of CO2 is negative.

Graphical abstract

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    G.L. Gutsev, R.J. Bartlett, R.N. Compton, J. Chem. Phys. 108, 6756 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    M.R. Nimlos, G.B. Ellison, J. Phys. Chem. 90, 2574 (1986)CrossRefGoogle Scholar
  3. 3.
    R. Abouaf, F. Fiquet-Fayard, J. Phys. B: At. Mol. Phys. 9, L323 (1976)ADSCrossRefGoogle Scholar
  4. 4.
    O.J. Orient, S.K. Srivastava, J. Chem. Phys. 78, 2949 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    I. Jana, D. Nandi, Phys. Rev. A 97, 042706 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    I. Jana, D. Nandi, J. Phys. B: At. Mol. Phys. 52, 185202 (2019)CrossRefGoogle Scholar
  7. 7.
    R.D. Shelton, A.H. Nielsen, W.H. Fletcher, J. Chem. Phys. 21, 2178 (1953)ADSCrossRefGoogle Scholar
  8. 8.
    R.H. Maybury, S. Gordon, J.J. Katz, J. Chem. Phys. 23, 1277 (1955)ADSCrossRefGoogle Scholar
  9. 9.
    J. Liang, H. Li, Chem. Phys. 314, 3172 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Zhu, Z.-L. Lang, N.-N. Ma, L.-K. Yan, Z.-M. Su, Phys. Chem. Chem. Phys. 16, 180172 (2014)Google Scholar
  11. 11.
    M. Boopathi, P. Udhayakala, T.V. Rajendiran, S. Gunasekaran, J. Appl. Spectrosc. 83, 12 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    L. Bencivenni, N. Sanna, L. Schriver-Mazzuoli, A. Schriver, J. Chem. Phys. 104, 7836 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    D. Forney, W.E. Thompson, M.E. Jacox, J. Chem. Phys. 99, 7393 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Esrafili, M. Vakili, J. Mol. Model. 20, 2291 (2014)CrossRefGoogle Scholar
  15. 15.
    K. Takahashi, S. Sawamura, N.M. Dimitrijevic, D.M. Bartels, C.D. Jonah, J. Phys. Chem. A 106, 108 (2002)CrossRefGoogle Scholar
  16. 16.
    R. Abouaf, R. Paineau, F. Fiquet-Fayard, J. Phys. B: At. Mol. Phys. 9, 303 (1976)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Chantry, J. Chem. Phys. 57, 3180 (1972)ADSCrossRefGoogle Scholar
  18. 18.
    O.J. Orient, S.K. Srivastava, Chem. Phys. Lett. 96, 681 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    A. Moradmand, D.S. Slaughter, D.J. Haxton, T.N. Rescigno, C.W. McCurdy, Th Weber, S. Matsika, A.L. Landers, A. Belkacem, M. Fogle, Phys. Rev. A 88, 032703 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A. Moradmand, D.S. Slaughter, A.L. Landers, M. Fogle, Phys. Rev. A 88, 022711 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    P. Nag, D. Nandi, Phys. Rev. A 91, 052705 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    D. Schröder, C.A. Schalley, J.N. Harvey, H. Schwarz, Int. J. Mass Spectrom. 185, 25 (1999)CrossRefGoogle Scholar
  23. 23.
    H. He, P. Zapol, L.A. Curtiss, J. Phys. Chem. C 114, 21474 (2010)CrossRefGoogle Scholar
  24. 24.
    C.D. Cooper, R.N. Compton, Chem. Phys. Lett. 14, 29 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    C.E. Klots, J. Chem. Phys. 71, 4172 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    T. Sommerfeld, H.-D. Meyer, L.S. Cederbaum, Phys. Chem. Chem. Phys. 6, 42 (2004)CrossRefGoogle Scholar
  27. 27.
    A. Ghosh, N. Vaval, S. Pal, R.J. Bartlett, J. Chem. Phys. 141, 164113 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    T. Sommerfeld, J. Phys. B: At., Mol. Opt. Phys. 36, L127 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    T. Sommerfeld, H.-D. Meyer, L.S. Cederbaum, Phys. Chem. Chem. Phys. 6, 42 (2004)CrossRefGoogle Scholar
  30. 30.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta Jr, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2009)Google Scholar
  31. 31.
    M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    D.E. Woon, J. Chem. Phys. 98, 1358 (1993)ADSCrossRefGoogle Scholar
  33. 33.
    J.A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 87, 5968 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    J. Paldus, J. Čížek, I. Shavitt, Phys. Rev. A 5, 50 (1972)ADSCrossRefGoogle Scholar
  35. 35.
    J.J. Grabowski, J.M. Van Doren, C.H. DePuy, V.M. Bierbaum, J. Chem. Phys. 80, 575 (1984)ADSCrossRefGoogle Scholar
  36. 36.
    M. Gupta, K.L. Baluja, Phys. Rev. A 73, 042702 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    E.P. Wigner, Phys. Rev. 70, 15 (1946)ADSCrossRefGoogle Scholar
  38. 38.
    E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947)ADSCrossRefGoogle Scholar
  39. 39.
    E.P. Wigner, Phys. Rev. 70, 606 (1946)ADSCrossRefGoogle Scholar
  40. 40.
    T. Koopmans, Physica 1, 104 (1934)ADSCrossRefGoogle Scholar
  41. 41.
    A. Szabo, N.S. Ostlund, Modern quantum chemistry: introduction to advanced electronic structure theory (Courier Corporation, 2012)Google Scholar
  42. 42.
    R.N. Compton, P.W. Reinhardt, C.D. Cooper, J. Chem. Phys. 63, 3821 (1975)ADSCrossRefGoogle Scholar
  43. 43.
    J. Baltrusaitis, E.V. Patterson, C. Hatch, J. Phys. Chem. A 116, 9331 (2012)CrossRefGoogle Scholar
  44. 44.
    J.S. Murray, K. Sen, Molecular electrostatic potentials: concepts and applications (Elsevier, 1996), Vol. 3Google Scholar
  45. 45.
    T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012)CrossRefGoogle Scholar
  46. 46.
    S. Grabowsky, P. Luger, J. Buschmann, T. Schneider, T. Schirmeister, A.N. Sobolev, D. Jayatilaka, Angew. Chem. Int. Ed. 51, 6776 (2012)CrossRefGoogle Scholar
  47. 47.
    A.G. Briggs, J. Chem. Educ. 47, 391 (1970)CrossRefGoogle Scholar
  48. 48.
    K. Gope, V.S. Prabhudesai, N.J. Mason, E. Krishnakumar, J. Chem. Phys. 147, 054304 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    S. Basumallick, S. Bhattacharyya, I. Jana, N. Vaval, S. Pal, Study of shape resonance of sulfur dioxide anion excited states using cap-cip-fsmrcc method (under review)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia
  2. 2.Department of Chemical SciencesIndian Institute of Science Education and Research KolkataMohanpurIndia

Personalised recommendations