Advertisement

Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations

  • Talat Körpınar
  • Rıdvan Cem DemirkolEmail author
  • Zeliha Körpınar
Regular Article

Abstract

In this paper, we firstly obtain the evolution equations of the magnetic field and electric field vectors of polarized light ray propagating along a coiled optical fiber in Minkowski space. Then we define new kinds of binormal motions and new kinds of Hasimoto transformations to relate these evolution equations into the nonlinear Schrodinger’s equation. During this procedure, we use a parallel adapted frame or more commonly known as Bishop frame to characterize the coiled optical fiber geometrically. We also propose perturbed solutions of the nonlinear Schrödinger’s evolution equation that governs the propagation of solitons through the electric field (E) and magnetic field (M) vectors. Finally, we provide some numerical simulations to supplement the analytical outcomes.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    M. Lakshmanan, S. Rajasekar, Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer-Verlag, New York, 2003)Google Scholar
  2. 2.
    B. Matveev, M.A. Salle, Darboux Transformations and Solitons (Springer, Berlin, 1991)Google Scholar
  3. 3.
    M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform (Cambridge University Press, Cambridge, 1990)Google Scholar
  4. 4.
    M. Wang, Y. Zhou, Z. Li, Phys. Lett. A 216, 67 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    R.M. Miura, Bäcklund transformations, the inverse scattering method, solitons and their applications, in Proceedings of the NSF Research Workshop on Contact Transformations (Springer, Nashville, Tennessee, 1974)Google Scholar
  6. 6.
    S. Liu, Z. Fu, S. Liu, Q. Zhao, Phys. Lett. A 289, 69 (2001)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Conte, M. Musette, J. Phys. A: Math. General 25, 5609 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    R. Hirota, Direct methods in soliton theory, in Solitons (Springer, Berlin, 1980)Google Scholar
  9. 9.
    F. Cao, Geometric Curve Evolution and Image Processing (Springer Science & Business Media, 2003)Google Scholar
  10. 10.
    R. Balakrishnan, R.A. Bishop, R. Dandoloff, Phys. Rev. Lett. 64, 2107 (1990)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    W.Y. Ding, Y.D. Wang, Sci. China Ser. A: Math. 41, 746 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    N. Koiso, Osaka J. Math. 34, 199 (1997)MathSciNetGoogle Scholar
  13. 13.
    N.H. Chang, J. Shatah, K. Uhlenbeck, Commun. Pure Appl. Math. A 53, 590 (2000)CrossRefGoogle Scholar
  14. 14.
    A. Nahmod, A. Stefanov, K. Uhlenbeck, Commun. Pure Appl. Math. A 56, 114 (2003)CrossRefGoogle Scholar
  15. 15.
    M.V. Berry, Proc. R. Soc. London A 392, 45 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    J.N. Ross, Opt. Quantum Electron. 16, 455 (1984)ADSCrossRefGoogle Scholar
  17. 17.
    M. Kugler, S. Shtrikman, Phys. Rev. D 37, 934 (1988)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    C.N. Alexeyev, M.A. Yavorsky, J. Opt. A: Pure Appl. Opt. 9, 6 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    L.R. Bishop, Am. Math. Mon. 82, 246 (1975)CrossRefGoogle Scholar
  20. 20.
    T. Körpınar, R.C. Demirkol, J. Modern Opt. 66, 857 (2019)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    N. Mukunda, R. Simon, Ann. Phys. 228, 205 (1993)ADSCrossRefGoogle Scholar
  22. 22.
    M. Barros, J.L. Cabrerizo, M. Fernandez, A. Romero, J. Math. Phys. 48, 082904 (2007)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    G.L. Lamb, J. Math. Phys. 18, 1654 (1977)ADSCrossRefGoogle Scholar
  24. 24.
    S. Murugesh, R. Dandoloff, Phys. Lett. A 290, 81 (2001)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Z. Wei-Zhong, L. Min-Li, Q. Yu-Hai, W. Ke, Commun. Theor. Phys. 44, 415 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Ding, J. Inoguchi, Chaos Solitons Fractals 21, 669 (2004)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    N. Gurbuz, Int. J. Geom. Methods Mod. Phys. 14, 1750175 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    N. Gurbuz, Int. J. Geom. Methods Mod. Phys. 15, 1850023 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Hasimoto, J. Fluid Mech. 51, 477 (1972)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Biswas, Optik 171, 217 (2018)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Talat Körpınar
    • 1
  • Rıdvan Cem Demirkol
    • 1
    Email author
  • Zeliha Körpınar
    • 2
  1. 1.Mus Alparslan University, Department of MathematicsMusTurkey
  2. 2.Mus Alparslan University, Administration DepartmentMusTurkey

Personalised recommendations