Advertisement

Reactive molecular dynamics simulations of organometallic compound W(CO)6 fragmentation,

  • Pablo de VeraEmail author
  • Alexey Verkhovtsev
  • Gennady Sushko
  • Andrey V. Solov’yov
Regular Article
  • 31 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

Irradiation- and collision-induced fragmentation studies provide information about geometry, electronic properties and interactions between structural units of various molecular systems. Such knowledge brings insights into irradiation-driven chemistry of molecular systems which is exploited in different technological applications. An accurate atomistic-level simulation of irradiation-driven chemistry requires reliable models of molecular fragmentation which can be verified against mass spectrometry experiments. In this work fragmentation of a tungsten hexacarbonyl, W(CO)6, molecule is studied by means of reactive molecular dynamics simulations. The quantitatively correct fragmentation picture including different fragmentation channels is reproduced. We show that distribution of the deposited energy over all degrees of freedom of the parent molecule leads to thermal evaporation of CO groups and the formation of W(CO)n+ (n = 0 – 5) fragments. Another type of fragments, WC(CO)n+ (n = 0 – 4), is produced due to cleavage of a C–O bond as a result of localized energy deposition. Calculated fragment appearance energies are in good agreement with experimental data. These fragmentation mechanisms have a general physical nature and should take place in radiation-induced fragmentation of different molecular and biomolecular systems.

Graphical abstract

Supplementary material

References

  1. 1.
    J.P. Connerade, A.V. Solov’yov (eds.), Latest Advances in Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale (Imperial College Press, London, UK, 2008)Google Scholar
  2. 2.
    G. García Gómez-Tejedor, M.C. Fuss (eds.), Radiation Damage in Biomolecular Systems (Springer Science + Business Media B.V., Dordrecht, The Netherlands, 2012)Google Scholar
  3. 3.
    R.M. Sweet, A.D. Woodhead (eds.), Synchrotron Radiation in Structural Biology (Springer-Verlag, US, Boston, MA, 1989)Google Scholar
  4. 4.
    T. Schlathölter, F. Alvarado, R. Hoekstra, Nucl. Instrum. Methods B 233, 62 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    R. Spezia, A. Martin-Somer, V. Macaluso, Z. Homayoon, S. Pratihar, W.L. Hase, Faraday Discuss. 195, 599 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    J.C. Poully, J. Miles, S. De Camillis, A. Cassimi, J.B. Greenwood, Phys. Chem. Chem. Phys. 17, 7172 (2015)CrossRefGoogle Scholar
  7. 7.
    A.V. Solov’yov (ed.), , Nanoscale Insights into Ion-Beam Cancer Therapy (Springer International Publishing, Cham, Switzerland, 2017)Google Scholar
  8. 8.
    I. Utke, P. Hoffmann, J. Melngailis, J. Vac. Sci. Technol. B 26, 1197 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Utke, P. Moshkalev(eds.), Russel, Nanofabrication Using Focused Ion and Electron Beams Principles and Applications 9Oxford University Press, New York, NY, 2012)Google Scholar
  10. 10.
    M. Huth, F. Porrati, O.V. Dobrovolskiy, Microelectron. Eng. 185–186, 9 (2018)CrossRefGoogle Scholar
  11. 11.
    J.M. De Teresa, A. Fernández-Pacheco, R. Córdoba, L. Serrano-Ramón, S. Sangiao, M.R. Ibarra, J. Phys. D: Appl. Phys. 49, 243003 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)CrossRefGoogle Scholar
  13. 13.
    T.P.R. Kumar, P. Weirich, L. Hrachowina, M. Hanefeld, R. Bjornsson, H.R. Hrodmarsson, S. Barth, D.H. Fairbrother, M. Huth, O. Ingólfsson, Beilstein J. Nanotechnol. 9, 555 (2018)CrossRefGoogle Scholar
  14. 14.
    F. Porrati, M. Pohlit, J. Müller, S. Barth, F. Biegger, C. Gspan, H. Plank, M. Huth, Nanotechnology 26, 475701 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    S. Beranová, C. Wesdemiotis, J. Am. Soc. Mass Spectrom. 5, 1093 (1994)CrossRefGoogle Scholar
  16. 16.
    P.J. Clements, F.R. Sale, Metall. Trans. B 7, 171 (1976)CrossRefGoogle Scholar
  17. 17.
    R.G. Cooks, T. Ast, B. Kralj, V. Kramer, D. Žigon, J. Am. Soc. Mass Spectrom. 1, 16 (1990)CrossRefGoogle Scholar
  18. 18.
    V.H. Wysocki, H.I. Kenttämaa, R.G. Cooks, Int. J. Mass Spectrom. Ion Processes 75, 181 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    R. Susič, L. Lu, D.E. Riederer Jr, D. Žigon, R.G. Cooks, T. Ast, J. Mass Spectrom. 27, 769 (1992)Google Scholar
  20. 20.
    K. Wnorowski, M. Stano, C. Matias, S. Denifl, W. Barszczewska, Š. Matejčík, Rapid Commun. Mass Spectrom. 26, 2093 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    M. Allan, M. Lacko, P. Papp, Š. Matejčík, M. Zlatar, I.I. Fabrikant, J. Kočišek, J. Fedor, Phys. Chem. Chem. Phys. 20, 11692 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Wnorowski, M. Stano, W. Barszczewska, A. Jówko, Š. Matejčík, Int. J. Mass Spectrom. 314, 42 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Neustetter, E. Jabbour Al Maalouf, P. Limão Vieira, S. Denifl, J. Chem. Phys. 145, 054301 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    M. Lacko, P. Papp, K. Wnorowski, Š. Matejčík, Eur. Phys. J. D 69, 84 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    J. Lengyel, J. Fedor, M. Fárník, J. Phys. Chem. C 120, 17810 (2016)CrossRefGoogle Scholar
  26. 26.
    G.B. Sushko, I.A. Solov’yov, A.V. Verkhovtsev, S.N. Volkov, A.V. Solov’yov, Eur. Phys. J. D 70, 12 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, Eur. Phys. J. D 70, 217 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    I.A. Solov’yov, A.V. Korol, A.V. Solov’yov, Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer (Springer International Publishing, Cham, Switzerland, 2017)CrossRefGoogle Scholar
  29. 29.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012)CrossRefGoogle Scholar
  30. 30.
    P. de Vera, E. Surdutovich, N.J. Mason, F.J. Currell, A.V. Solov’yov, Eur. Phys. J. D 72, 147 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    G.B. Sushko, I.A. Solov’yov, A.V. Solov’yov, J. Mol. Graphics Modell. 88, 247 (2019)CrossRefGoogle Scholar
  32. 32.
    A. Verkhovtsev, A.V. Korol, A.V. Solov’yov, Eur. Phys. J. D 71, 212 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102, 3586 (1998)CrossRefGoogle Scholar
  34. 34.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02 (Gaussian Inc., Wallingford, CT, 20160Google Scholar
  35. 35.
    S.V. Arnesen, H.M. Seip, Acta Chem. Scand. 20, 2711 (1966)CrossRefGoogle Scholar
  36. 36.
    R.K. Szilagyi, G. Frenking, Organometallics 16, 4807 (1997)CrossRefGoogle Scholar
  37. 37.
    A. Diefenbach, F.M. Bickelhaupt, G. Frenking, J. Am. Chem. Soc. 122, 6449 (2000)CrossRefGoogle Scholar
  38. 38.
    L.G. Gerchikov, A.N. Ipatov, A.V. Solov’yov, W. Greiner, J. Phys. B: At. Mol. Opt. Phys. 33, 4905 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    G.D. Michels, G.D. Flesch, H.J. Svec, Inorg. Chem. 19, 479 (1980)CrossRefGoogle Scholar
  40. 40.
    R.E. Winters, R.W. Kiser, Inorg. Chem. 4, 157 (1965)CrossRefGoogle Scholar
  41. 41.
    D.R. Bidinosti, N.S. McIntyre, Can. J. Chem. 45, 641 (1967)CrossRefGoogle Scholar
  42. 42.
    A. Foffani, S. Pignataro, B. Cantone, F. Grasso, Z. Phys, Chem. 45, 79 (1965)Google Scholar
  43. 43.
    F. Qi, S. Yang, L. Sheng, H. Gao, Y. Zhang, S. Yu, J. Chem. Phys. 107, 10391 (1997)ADSCrossRefGoogle Scholar
  44. 44.
    B. Darwent, Bond Dissociation Energies in Simple Molecules (National Bureau of Standards, Washington, 1970)Google Scholar
  45. 45.
    J.A. Dean, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 1972)Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MBN Research CenterFrankfurt am MainGermany
  2. 2.Department of Medical Physics in Radiation OncologyGerman Cancer Research CenterHeidelbergGermany
  3. 3.On leave from Ioffe InstituteSt. PetersburgRussia

Personalised recommendations