Regularities in the transformation of the oscillating decay rate in moving unstable quantum systems

  • Filippo GiraldiEmail author
Regular Article


Decay laws of unstable quantum systems, which move with constant linear momentum in the laboratory reference frame and exhibit oscillating decay rate, are analyzed over intermediate times. The transformations of the decay laws and intermediate times at rest, which are induced by the change of reference frame, are obtained from the basic principles of quantum theory and special relativity by approximating the modulus of the survival amplitude at rest via the superposition of purely exponential and exponentially damped oscillating modes. The mass distribution density is considered to be approximately symmetric with respect to the mass of resonance. Under determined conditions, the modal decay widths at rest, Γj, and the modal frequencies of oscillations at rest, Ωj, reduce regularly, Γj/γ and Ωj/γ, in the laboratory reference frame. Over a determined time window, the survival probability at rest, the intermediate times at rest and, if the oscillations are periodic, the period of the oscillations at rest transform regularly in the laboratory reference frame according to the same time scaling. The scaling reproduces the relativistic dilation of times if the mass of resonance is considered to be the effective mass at rest of the moving unstable quantum system with relativistic Lorentz factor γ.

Graphical abstract


Atomic Physics 


  1. 1.
    L.A. Khalfin, Sov. Phys. JETP 6, 1053 (1958)ADSGoogle Scholar
  2. 2.
    L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    B. Bakamjian, Phys. Rev. 121, 1849 (1961)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    P. Exner, Phys. Rev. D 28, 2621 (1983)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    E.V. Stefanovich, Int. J. Theor. Phys. 35, 2539 (1996)CrossRefGoogle Scholar
  6. 6.
    M.I. Shirokov, Int. J. Theor. Phys. 43, 1541 (2004)CrossRefGoogle Scholar
  7. 7.
    M.I. Shirokov, Concepts Phys. 3, 193 (2006)Google Scholar
  8. 8.
    K. Urbanowski, Phys. Lett. B 737, 346 (2014)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Giacosa, Acta Phys. Pol. B 47, 2135 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Giacosa, Acta Phys. Pol. B 48, 1831 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    K. Urbanowski, Acta Phys. Pol. B 48, 1411 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    F. Giacosa, Adv. High Energy Phys. 2018, 4672051 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1972)Google Scholar
  14. 14.
    E.V. Stefanovich, https://arXiv:physics/0603043 (2006)
  15. 15.
    K. Urbanowski, Acta Phys. Pol. B 48, 1847 (2017)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    E.V. Stefanovich, Adv. High Energy Phys. 2018, 4657079 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    B. Rossi, D.B. Hall, Phys. Rev. A 59, 223 (1941)ADSCrossRefGoogle Scholar
  18. 18.
    D.H. Frish, J.H. Smith, Am. J. Phys. 31, 342 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    D.S. Ayres, A.M. Cormack, A.J. Greenberg, R.W. Kenney, D.O. Cladwell, V.B. Elings, W.P. Hesse, R.J. Morrison, Phys. Rev. D 3, 1051 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Roos, J. Marraffino, S. Reucroft, J. Waters, M.S. Webster, E.G.H. Williams, A. Manz, R. Settles, G. Wolf, Nature 286, 244 (1980)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bailey, K. Borer, F. Combley, H. Drumm, F. Krienen, F. Lange, E. Picasso, W. von Ruden, F.J.M. Farley, J.H. Field, W. Flegel, P.M. Hattersley, Nature 268, 301 (1977)ADSCrossRefGoogle Scholar
  22. 22.
    F.J.M. Farley, Z. Phys, C 56, S88 (1992)Google Scholar
  23. 23.
    M.I. Shirokov, Phys. Part. Nucl. Lett. 6, 14 (2009)CrossRefGoogle Scholar
  24. 24.
    F. Giacosa, G. Pagliara, Mod. Phys. Lett. A 26, 2247 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Y.A. Litvinov, F. Bosch, N. Winckler, D. Boutin, H.G. Essel, T. Faestermann, H. Geissel, S. Hess, P. Kienle, R. Knöbel, C. Kozhuharov, Phys. Lett. B 664, 162 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    P.A. Vetter, R.M. Clark, J. Dvorak, S.J. Freedman, K.E. Gregorich, H.B. Jeppesen, D. Mittelberger, M. Wiedeking, Phys. Lett. B 670, 196 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    P. Kienle, F. Bosch, P. Bühler, T. Faestermann, Y.A. Litvinov, N. Winckler, M.S. Sanjari, D.B. Shubina, D. Atanasov, H. Geissel, V. Ivanova, Phys. Lett. B 726, 638 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    F.C. Ozturk, B. Akkus, D. Atanasov, H. Beyer, F. Bosch, D. Boutin, C. Brandau, P. Bühler, R.B. Cakirli, R.J. Chen, W.D. Chen, X.C. Chen, I. Dillmann, C. Dimopoulou, W. Enders, H.G. Essel, T. Faestermann, O. Forstner, B.S. Gao, H. Geissel, R. Gernhäuser, R.E. Grisenti, A. Gumberidze, S. Hagmann, T. Heftrich, M. Heil, M.O. Herdrich, P.-M. Hillenbrand, T. Izumikawa, P. Kienle, C. Klaushofer, C. Kleffner, C. Kozhuharov, R.K. Knöbel, O. Kovalenko, S. Kreim, T. Kühl, C. Lederer-Woods, M. Lestinsky, S.A. Litvinov, YuA Litvinov, Z. Liu, X.W. Ma, L. Maier, B. Mei, H. Miura, I. Mukha, A. Najafi, D. Nagae, T. Nishimura, C. Nociforo, F. Nolden, T. Ohtsubo, Y. Oktem, S. Omika, A. Ozawa, N. Petridis, J. Piotrowski, R. Reifarth, J. Rossbach, R. Sánchez, M.S. Sanjari, C. Scheidenberger, R.S. Sidhu, H. Simon, U. Spillmann, M. Steck, Th Stöhlker, B.H. Sun, L.A. Susam, F. Suzaki, T. Suzuki, SYu Torilov, C. Trageser, M. Trassinelli, S. Trotsenko, X.L. Tu, P.M. Walker, M. Wang, G. Weber, H. Weick, N. Winckler, D.F.A. Winters, P.J. Woods, T. Yamaguchi, X.D. Xu, X.L. Yan, J.C. Yang, Y.J. Yuan, Y.H. Zhang, X.H. Zhou, FRS-ESR Collaboration, ILIMA Collaboration, SPARC Collaboration, TBWD Collaboration, Phys. Lett. B 797, 134800 (2019)CrossRefGoogle Scholar
  29. 29.
    F. Giacosa, G. Pagliara, Quantum Matter 2, 54 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Giacosa, G. Pagliara, PoS BORMIO 2012, 028 (2012)Google Scholar
  31. 31.
    P. Facchi, S. Pascazio, in Fundamental Aspects of Quantum Physics, Quantum Probability and White Noise Analysis, edited by L. Accardi, S. Tasaki, (World Scientific, 2003), Vol. XVII, p. 222Google Scholar
  32. 32.
    K. Urbanowski, Eur. Phys. J. D 54, 25 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    S.R. Wilkinson, C.F. Bharucha, M.C. Fischer, K.W. Madison, P.R. Morrow, Q. Niu, B. Sundaram, M.G. Raizen, Nature 387, 575 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    D.E. Alburger, G. Harbottle, E.F. Northon, Earth Planet. Sci. Lett. 78, 168 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    F. Giraldi, J. Phys. A 52, 415301 (2019)CrossRefGoogle Scholar
  36. 36.
    G.R. de Prony, J. Ec. Polytechn. 1, 24 (1795)Google Scholar
  37. 37.
    J.F. Hauer, C.J. Demeure, L.L. Scharf, IEEE Trans. Power Syst. 5, 80 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    M.R. Smith, S. Cohn-Sfetcu, H.A. Buckmaster, Technometrics 18 (1976) 467.MathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Plonka, M. Tasche, GAMM-Mitt. 37, 239 (2014)MathSciNetCrossRefGoogle Scholar
  40. 40.
    J.C. Mauro, Y.Z. Mauro, Physica A 506, 75 (2018)ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    K. Urbanowski, Eur. Phys. J. D 54, 25 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    K. Urbanowski, Centr, Eur. J. Phys. 7, 696 (2009)Google Scholar
  43. 43.
    F. Giraldi, Adv. High Energy Phys. 2018, 7308935 (2018)MathSciNetCrossRefGoogle Scholar
  44. 44.
    P.L. Knight, Phys. Lett. A 61, 25 (1977)ADSCrossRefGoogle Scholar
  45. 45.
    N.G. Kelkar, M. Nowakowski, J. Phys. A 43, 385308 (2010)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    N.G. Kelkar, M. Nowakowski, K.P. Khemchandani, Phys. Rev. C 70, 024601 (2004)ADSCrossRefGoogle Scholar
  47. 47.
    D.F. Ramírez Jiménez, N.G. Kelkar, J. Phys. A 52, 055201 (2019)ADSCrossRefGoogle Scholar
  48. 48.
    F. Giraldi, Eur. Phys. J. D 69, 5 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    F. Giraldi, Eur. Phys. J. D 70, 229 (2016)ADSCrossRefGoogle Scholar
  50. 50.
    K. Urbanowski, Phys. Rev. A 50, 2847 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    M.I. Shirokov, V.A. Naumov, Concepts Phys. 4, 127 (2007)Google Scholar
  52. 52.
    F. Giraldi, J. Phys. A 51, 435303 (2018)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    K.M. Sluis, E.A. Gislason, Phys. Rev. A 43, 4581 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    D.S. Onley, A. Kumar, Am. J. Phys. 60, 432 (1992)ADSCrossRefGoogle Scholar
  55. 55.
    H. Jakobovits, Y. Rothschild, J. Levitan, Am. J. Phys. 63, 439 (1995)ADSCrossRefGoogle Scholar
  56. 56.
    F.W.J. Olver, D.W. Loizer, R.F. Boisvert, C.W. Clark, The NIST Handbook of Mathematical Functions (New York Cambridge University Press, 2010)Google Scholar
  57. 57.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integral, Series and Products. 7th edn (Academic Press, Orlando, Florida, 2007)Google Scholar
  58. 58.
    M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, New York, 1964)Google Scholar
  59. 59.
  60. 60.
    W.M. Gibson, B.R. Polard, Symmetry Principles in Elementary Particle Physics (Cambridge, 1976).Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Physics, University of KwaZulu-Natal and National Institute for Theoretical Physics (NITheP)DurbanSouth Africa
  2. 2.Gruppo Nazionale per la Fisica Matematica (GNFM-INdAM), c/o Istituto Nazionale di Alta Matematica Francesco Severi, Città UniversitariaRomaItaly

Personalised recommendations