Advertisement

Dust-acoustic rogue waves in an electron depleted plasma

  • R. K. ShikhaEmail author
  • N. A. ChowdhuryEmail author
  • A. MannanEmail author
  • A. A. MamunEmail author
Regular Article
  • 2 Downloads

Abstract

A rigorous theoretical investigation is made to study the characteristics of dust-acoustic (DA) waves (DAWs) in an electron depleted unmagnetized opposite polarity dusty plasma system that contains super-thermal (κ-distributed) ions, mobile positively and negatively charged dust grains for the first time. The reductive perturbation method is employed to obtain the NLSE to explore the modulational instability (MI) conditions for DAWs as well as the formation and characteristics of gigantic rogue waves. The nonlinear and dispersion properties of the dusty plasma medium are the prime reasons behind the formation of rogue waves. The height and thickness of the DARWs associated with DAWs as well as the MI conditions of DAWs are numerically analyzed by changing different dusty plasma parameters, such as dust charges, dust and ion number densities, and ion-temperature, etc. The implications of the results for various space dusty plasma systems (viz., mesosphere, F-rings of Saturn, and cometary atmosphere, etc.) as well as laboratory dusty plasma produced by laser-matter interaction are briefly mentioned.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    P.K. Shukla, V.P. Silin, Phys. Scr. 45, 508 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    M.M. Hossen, M.S. Alam, S. Sultana, A.A. Mamun, Eur. Phys. J. D 70, 252 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M.M. Hossen, M.S. Alam, S. Sultana, A.A. Mamun, Phys. Plasmas 23, 023703 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Hossen, L. Nahar, M.S. Alam, S. Sultana, A.A. Mamun, High Energy Density Phys. 24, 9 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    M. Shahmansouri, H. Alinejad, Phys. Plasmas 20, 033704 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet. Space Sci. 38, 543 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    A. Barkan, R.L. Merlino, N.D́. Angelo, Phys. Plasmas 2, 3563 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    F. Melandso, Phys. Plasmas 3, 3890 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    P.K. Shukla, M. Yu, Y.R. Bharuthram, J. Geophys. Res. 96, 21343 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    M. Ferdousi, M.R. Miah, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 43, 360 (2015)Google Scholar
  11. 11.
    A.A. Mamun, R.A. Cairns, P.K. Shukla, Phys. Plasmas 3, 702 (1996)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Dialynas, S.M. Krimigis, D.G. Mitchemm, D.C. Hamilton, N. Krupp, P.C. Brandt, J. Geophys. Res. 114, A01212 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Mayout, M. Tribeche, J. Plasma Phys. 78, 657 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    B. Sahu, M. Tribeche, Astrophys. Space Sci. 341, 573 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    M. Ferdousi, S. Sultana, M.M. Hossen, M.R. Miah, A.A. Mamun, Eur. Phys. J. D. 71, 102 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    M. Shahmansouri, H. Alinejad, Phys. Plasmas 19, 123701 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    I. Kourakis, S. Sultana, AIP Conf. Proc 1397, 86 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    M.J. Uddin, M.S. Alam, A.A. Mamun, Phys. Plasmas 22, 062111 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S. Sultana, I. Kourakis, Plasma Phys. Control. Fusion 53, 045003 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    N. Ahmed, A. Mannan, N.A. Chowdhury, A.A. Mamun, Chaos 28, 123107 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    T.S. Gill, A.S. Bains, C. Bedi, Phys. Plasmas 17, 013701 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    N.S. Saini, I. Kourakis, Phys. Plasmas 15, 123701 (2018)ADSCrossRefGoogle Scholar
  24. 24.
    I. Kourakis, P.K. Shukla, J. Plasma Phys. 71, 185 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Phys. Rev. E 80, 026601 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ankiewicz, N. Devine, N. Akhmediev, Phys. Lett. A 373, 3997 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsJahangirnagar UniversitySavar, DhakaBangladesh
  2. 2.Institut für Mathematik, Martin Luther Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.Wazed Miah Science Research Center, Jahangirnagar UniversitySavar, DhakaBangladesh

Personalised recommendations