Advertisement

Modeling elastic properties of polystyrene through coarse-grained molecular dynamics simulations

  • Yaroslav M. Beltukov
  • Igor Gula
  • Alexander M. Samsonov
  • Ilia A. Solov’yovEmail author
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Topical Issue: Dynamics of Systems on the Nanoscale (2018)

Abstract

This paper presents an extended coarse-grained investigation into the elastic properties of polystyrene. In particular, we employ the well-known MARTINI force field and its modifications to achieve molecular dynamics simulations at the μs timescale, which take slow relaxation processes of polystyrene into account, such that the simulations permit analyzing the bulk modulus, the shear modulus, and the Poisson ratio. These elastic properties are used to gauge a promising protocol for calculation of various mechanical properties of a polymer system, based on the analysis of internal pressure in the system. Through modification of MARTINI force field parameters we elucidate that for various sets of polystyrene interactions the internal pressure of the system tends to saturate quickly enough to permit μs-long simulations sufficient to predict elastic moduli close to those values reported in the experiment. We demonstrate that the suggested approach yields significantly more accurate results than the alternative analysis of internal energy of the system, and the performed analysis reveals that significantly longer simulations are necessary for a similar analysis in that case.

Graphical abstract

References

  1. 1.
    P. Henrique, C. Camargo, K.G. Satyanarayana, F. Wypych, Mater. Res. 12, 1 (2009).Google Scholar
  2. 2.
    J.E. Mark, Polymer Data Handbook (Oxford University Press, 1999).Google Scholar
  3. 3.
    J. Mark, B. Erman, M. Roland, The Science and Technology of Rubber (Academic Press, 2013).Google Scholar
  4. 4.
    C.A. Harper, Handbook of Plastics, Elastomers, and Composites (McGraw-Hill, 2002).Google Scholar
  5. 5.
    J. Fawaz, V. Mittal, Synthesis of polymer nanocomposites: review of various techniques, in Synthesis techniques for polymer nanocomposites. 1st edn. (Wiley-VCH Verlag GmBH & Co., KGaA, Germany, 2015).Google Scholar
  6. 6.
    M. Šupová, G.S. Martynková, K. Barabaszová, Sci. Adv. Mater. 3, 1 (2011).Google Scholar
  7. 7.
    A. Nasir, A. Kausar, Polym. Plast. Technol. Eng. 54, 1819 (2015).Google Scholar
  8. 8.
    G. Armstrong, Eur. J. Phys. 36, 063001 (2015).Google Scholar
  9. 9.
    H. Zou, S. Wu, J. Shen, Chem. Rev. 108, 3893 (2008).Google Scholar
  10. 10.
    I.G. Mathioudakis, G.G. Vogiatzis, C. Tzoumanekas, D.N. Theodorou, Soft Matter 12, 7585 (2016).ADSGoogle Scholar
  11. 11.
    I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 8 (2012).Google Scholar
  12. 12.
    D. Bracho, V.N. Dougnac, H. Palza, R. Quijada, J. Nanomater. 2012, 19 (2012).Google Scholar
  13. 13.
    P. Musto, G. Ragosta, G. Scarinzi, L. Mascia, Polymer 45, 1697 (2004).Google Scholar
  14. 14.
    M.I. Sarwar, S. Zulfiqar, Z. Ahmad, Polym. Int. 57, 292 (2008).Google Scholar
  15. 15.
    W. Liu, X. Tian, P. Cui, Y. Li, K. Zheng, Y. Yang, J. Appl. Poly. Sci. 91, 1229 (2004).Google Scholar
  16. 16.
    F. Yang, G.L. Nelson, J. Appl. Polym. Sci. 91, 3844 (2004).Google Scholar
  17. 17.
    Z.S. Petrović, I. Javni, A. Waddon, G. Bánhegyi, J. Appl. Polym. Sci. 76, 133 (2000).Google Scholar
  18. 18.
    P. Liu, Z. Su, Mater. Chem. Phys. 94, 412 (2005).Google Scholar
  19. 19.
    H.S. Vaziri, I.A. Omaraei, M. Abadyan, M. Mortezaei, N. Yousefi, Mater. Design 32, 4537 (2011).Google Scholar
  20. 20.
    C. Bartholome, E. Beyou, E. Bourgeat-Lami, P. Cassagnau, P. Chaumont, L. David, N. Zydowicz, Polymer 46, 9965 (2005).Google Scholar
  21. 21.
    T.V.M. Ndoro, E. Voyiatzis, A. Ghanbari, D.N. Theodorou, M.C. Böhm, F. Müller-Plathe, Macromolecules 44, 2316 (2011).ADSGoogle Scholar
  22. 22.
    A. Ghanbari, T.V.M. Ndoro, F. Leroy, M. Rahimi, M.C. Böhm, F. Müller-Plathe, Macromolecules 45, 572 (2011).ADSGoogle Scholar
  23. 23.
    R.S. Rivlin, Philos. Trans. R. Soc. London, Ser. A 241, 379 (1948).ADSGoogle Scholar
  24. 24.
    M. Mooney, J. Appl. Phys. 11, 582 (1940).ADSGoogle Scholar
  25. 25.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Elsevier Butterworth-Heinemann, 1959).Google Scholar
  26. 26.
    F.T. Wall, P.J. Flory, J. Chem. Phys. 19, 1435 (1951).ADSGoogle Scholar
  27. 27.
    H.M. James, E. Guth, J. Chem. Phys. 11, 455 (1943).ADSGoogle Scholar
  28. 28.
    S.F. Edwards, Proc. Phys. Soc. 91, 513 (1967).ADSGoogle Scholar
  29. 29.
    R.J. Gaylord, Polym. Bull. 8, 325 (1982).Google Scholar
  30. 30.
    B. Mergell, R. Everaers, Macromolecules 34, 5675 (2001).ADSGoogle Scholar
  31. 31.
    M. Rubinstein, S. Panyukov, Macromolecules 35, 6670 (2002).ADSGoogle Scholar
  32. 32.
    G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986).ADSGoogle Scholar
  33. 33.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990).ADSGoogle Scholar
  34. 34.
    C. Svaneborg, H.A. Karimi-Varzaneh, N. Hojdis, F. Fleck, R. Everaers, Phys. Rev. E 94, 032502 (2016).ADSGoogle Scholar
  35. 35.
    G.S. Grest, K. Kremer, Macromolecules 23, 4994 (1990).ADSGoogle Scholar
  36. 36.
    R. Everaers, K. Kremer, J. Mol. Model. 2, 293 (1996).Google Scholar
  37. 37.
    C. Svaneborg, R. Everaers, G.S. Grest, J.G. Curro, Macromolecules 41, 4920 (2008).ADSGoogle Scholar
  38. 38.
    C. Bennemann, W. Paul, K. Binder, B. Dünweg, Phys. Rev. E 57, 843 (1998).ADSGoogle Scholar
  39. 39.
    V. Dubey, M. Han, W. Kopec, I.A. Solov’yov, K. Abe, H. Khandelia, Sci. Rep. 8, 12732 (2018).ADSGoogle Scholar
  40. 40.
    S.M. Kimø, I. Friis, I.A. Solov’yov, Biophys. J. 115, 616 (2018).ADSGoogle Scholar
  41. 41.
    D.R. Kattnig, C. Nielsen, I.A. Solov’yov, New J. Phys. 20, 083018 (2018).ADSGoogle Scholar
  42. 42.
    V. Akimov, L.C.B. Olsen, S.V.F. Hansen, I. Barrio-Hernandez, M. Puglia, S.S. Jensen, I.A. Solov’yov, I. Kratchmarova, B. Blagoev, J. Proteome Res. 17, 296 (2018).Google Scholar
  43. 43.
    I. Friis, E. Sjulstok, I.A. Solov’yov, Sci. Rep. 7, 13908 (2017).ADSGoogle Scholar
  44. 44.
    M. Klecka, C. Thybo, C. Macaubas, I. Solov’yov, J. Simard, I.M. Balboni, E. Fox, A. Voss, E.D. Mellins, K. Astakhova, Sci. Rep. 8, 5554 (2018).ADSGoogle Scholar
  45. 45.
    K.A. Jepsen, I.A. Solov’yov, Eur. Phys. J. D 71, 155 (2017).ADSGoogle Scholar
  46. 46.
    X. Zou, W. Ma, I.A. Solov’yov, C. Chipot, K. Schulten, Nucleic Acids Res. 40, 2747 (2012).Google Scholar
  47. 47.
    G. Rossi, L. Monticelli, S.R. Puisto, I. Vattulainen, T. Ala-Nissila, Soft Matter 7, 698 (2011).ADSGoogle Scholar
  48. 48.
    C. Ayyagari, D. Bedrov, G.D. Smith, Macromolecules 33, 6194 (2000).ADSGoogle Scholar
  49. 49.
    D.Y. Yoon, J. Chem. Phys. 98, 10037 (1993).ADSGoogle Scholar
  50. 50.
    J.-L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3430 (2010).ADSGoogle Scholar
  51. 51.
    A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 35, 9595 (2002).ADSGoogle Scholar
  52. 52.
    A.V. Lyulin, M.A.J. Michels, Macromolecules 35, 1463 (2002).ADSGoogle Scholar
  53. 53.
    A.V. Lyulin, N.K. Balabaev, M.A.J. Michels, Macromolecules 36, 8574 (2003).ADSGoogle Scholar
  54. 54.
    A.V. Lyulin, B. Vorselaars, M.A. Mazo, N.K. Balabaev, M.A.J. Michels, EPL 71, 618 (2005).ADSGoogle Scholar
  55. 55.
    A.V. Lyulin, M.A.J. Michels, Phys. Rev. Lett. 99, 085504 (2007).ADSGoogle Scholar
  56. 56.
    V.A. Harmandaris, K. Kremer, Macromolecules 42, 791 (2009).ADSGoogle Scholar
  57. 57.
    S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007).Google Scholar
  58. 58.
    S.J. Marrink, D.P. Tieleman, Chem. Soc. Rev. 42, 6801 (2013).Google Scholar
  59. 59.
    K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lopes, I. Vorobyov, A.D. MacKerell Jr, J. Comput. Chem. 31, 671 (2010).Google Scholar
  60. 60.
    H. Höcker, G.J. Blake, P.J. Flory, Trans. Faraday Soc. 2251, 67 (1971).Google Scholar
  61. 61.
    P. Zoller, D.J. Walsh, Standard Pressure-Volume-Tempera- ture Data for Polymers (Technomic, Lancaster, 1995).Google Scholar
  62. 62.
    I. Mathioudakis, G.G. Vogiatzis, C. Tzoumanekas, D.N. Theodorou, J. Phys. Conf. Ser. 738, 012021 (2016).Google Scholar
  63. 63.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005).Google Scholar
  64. 64.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996).Google Scholar
  65. 65.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993).ADSGoogle Scholar
  66. 66.
    I.A. Solov’yov, A.V. Yakubovich, P.V. Nikolaev, I. Volkovets, A.V. Solov’yov, J. Comput. Chem. 33, 2412 (2012).Google Scholar
  67. 67.
    T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, H. Yamakawa, Macromolecules 23, 290 (1990).ADSGoogle Scholar
  68. 68.
    F. Birch, Phys. Rev. 71, 809 (1947).ADSGoogle Scholar
  69. 69.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).ADSGoogle Scholar
  70. 70.
    W.S. Slaughter, Linearized Theory of Elasticity (Birkhäuser, 2002).Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yaroslav M. Beltukov
    • 1
  • Igor Gula
    • 2
  • Alexander M. Samsonov
    • 1
  • Ilia A. Solov’yov
    • 1
    • 2
    • 3
    Email author
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Department of PhysicsChemistry, and Pharmacy, University of Southern DenmarkOdense MDenmark
  3. 3.Institute of Physics, Carl von Ossietzky University OldenburgOldenburgGermany

Personalised recommendations