Theoretical investigation on interactions of H2 absorption to CuXe cations I and II

  • Xin Ying LiEmail author
  • Xue Cao
Regular Article


Geometries, stabilities and interactions of H2-absorption to CuXe cations at CCSD(T) theoretical level were investigated. T-shaped stable structures of H2-absorption to Cu or Xe atoms with different dissociation energies were found for CuXe+. Analysis of electron density functions, delocalization index and AIM theory suggest the partial covalent character and vdW character for three-atom Cu⋯H2 and Xe⋯H2 interactions. For CuXe2+, investigations show the break of H–H bonding upon H2-absorption and it could be considered as H2XeCu2+. All the interactions were visualized by independent gradient model analysis.

Graphical abstract


Molecular Physics and Chemical Physics 


  1. 1.
    L.Z. Ouyang, Y.J. Xu, H.W. Dong, L.X. Sun, M. Zhu, Int. J. Hydrogen Energy 34, 9671 (2009).CrossRefGoogle Scholar
  2. 2.
    J.M. Huang, L.Z. Ouyang, Y.J. Wen, H. Wang, J.W. Liu, Z.L. Chen, M. Zhu, Int. J. Hydrogen Energy 39, 6813 (2014).CrossRefGoogle Scholar
  3. 3.
    K. Aydin, R. Kenanoğlu, Int. J. Hydrogen Energy 43, 14047 (2018).CrossRefGoogle Scholar
  4. 4.
    L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, J. Phys. Chem. C 118, 7808 (2014).CrossRefGoogle Scholar
  5. 5.
    B. Chen, S. Chen, H.A. Bandal, R. Appiah-Ntiamoah, A.R. Jadhav, H. Kim, Int. J. Hydrogen Energy 43, 9296 (2018).CrossRefGoogle Scholar
  6. 6.
    L. Schlapbach, MRS Bull. 27, 675 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Dinca, J.R. Long, Angew. Chem. Int. Ed. 47, 6766 (2008).CrossRefGoogle Scholar
  8. 8.
    D.A. Obenchain, D.S. Frank, G.S. Grubbs, H.M. Pickett, S.E. Novick, J. Chem. Phys. 146, 204302 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Murray, P. Politzer, WIREs Comput. Mol. Sci. 7, e1326 (2017).CrossRefGoogle Scholar
  10. 10.
    X. Li, X. Cao, Int. J. Hydrogen Energy 43, 1709 (2018).CrossRefGoogle Scholar
  11. 11.
    X. Li, X. Cao, Int. J. Hydrogen Energy 43, 20892 (2018).CrossRefGoogle Scholar
  12. 12.
    E. Wahlström, in Miljörisker (Schildts, Helsinki, 1994), p. 105.Google Scholar
  13. 13.
    L. Xinying, C. Xue, Phys. Rev. A 77, 022508 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    L. Xinying, C. Xue, W. Yusheng, J. Cluster Sci. 23, 995 (2012).CrossRefGoogle Scholar
  15. 15.
    K.A. Peterson, C. Puzzarini, Theor. Chem. Acc. 114, 283 (2005).CrossRefGoogle Scholar
  16. 16.
    K.A. Peterson, D. Figgen, E. Goll, H. Stoll, M. Dolg, J. Chem. Phys. 119, 11113 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03W (Gaussian Inc., Pittsburgh, PA, 2003).Google Scholar
  19. 19.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970).ADSCrossRefGoogle Scholar
  20. 20.
    C. Lefebvre, G. Rubez, H. Khartabil, J. Boisson, J. Contreras-Garca, E. Hénon, Phys. Chem. Chem. Phys. 19, 17928 (2017).CrossRefGoogle Scholar
  21. 21.
    D.E. Smiles, W. Guang, P. Hrobárik, T.W. Hayton, J. Am. Chem. Soc. 138, 814 (2016).CrossRefGoogle Scholar
  22. 22.
    F. Cortés-Guzmán, R.F.W. Bader, Coord. Chem. Rev. 249, 633 (2005).CrossRefGoogle Scholar
  23. 23.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon Press, Oxford, 1990).Google Scholar
  24. 24.
    T. Lu, F. Chen, J. Comput. Chem. 33, 580 (2012).CrossRefGoogle Scholar
  25. 25.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)CrossRefGoogle Scholar
  26. 26.
    D. Cremer, E. Kraka, Angew. Chem. Int. Ed. 23, 627 (1984).CrossRefGoogle Scholar
  27. 27.
    W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A 112, 13593 (2008).CrossRefGoogle Scholar
  28. 28.
    E.D. Glendening, F. Weinhold, J. Comput. Chem. 19, 593 (1998).CrossRefGoogle Scholar
  29. 29.
    E.D. Glendening, F. Weinhold, J. Comput. Chem. 19, 610 (1998).CrossRefGoogle Scholar
  30. 30.
    E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis, F. Weinhold, NBO 6.0,
  31. 31.
    E.R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-Garca, A.J. Cohen, W. Yang, J. Am. Chem. Soc. 132, 6498 (2010).CrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computational Materials Science, School of Physics and Electronics, Henan UniversityKaifengP.R. China
  2. 2.National Demonstration Center for Experimental Physics and Electronics Education, School of Physics and Electronics, Henan UniversityKaifengP.R. China

Personalised recommendations