Global model of a radio-frequency ion thruster based on a holistic treatment of electron and ion density profiles

  • Andreas ReehEmail author
  • Uwe Probst
  • Peter J. Klar
Regular Article


We present a global model of a radio-frequency ion thruster. The model takes into account radial and axial density distributions for electrons and ions of the plasma inside the ionization vessel. These spatial distributions are based on analytical equations and heuristic assumptions and are used self-consistently in all conservation equations. They are considered in the 3D computation of electromagnetic fields and used to calculate the induced power generated by the coil current. We also consider the spatial ionization and excitation inside the plasma volume in the context of energy and charge conservation. Furthermore, the model includes effects of local charge and power losses on the walls. The extraction grid system is modeled in detail describing each extraction channel separately. The spatial dependence of the electron and ion density profile also leads to a radially varying ion beam current and ion focus across the grid system. Therefore, the parameters of each beamlet differ and need to be described individually by the 3D ion extraction code. An extension of the extraction code also simulates the neutral gas transmission coefficient of the aperture system. This approach enables us to determine the neutral gas density inside the ionization vessel as well as the neutral gas losses. The peripheral electric losses in the coil, the RF cables and the radio-frequency generator are derived by a circuit model.

Graphical abstract


Plasma Physics 


  1. 1.
    H. Löb, Die Verwendungsmöglichkeit der Hochfrequenzionenquelle in elektrostatischen Raketentriebwerken, Professorial dissertation, Naturwissenschaftliche Fakulät derJustus Liebig-Universität, Gießen, Germany, 1967Google Scholar
  2. 2.
    H.R. Kaufman, Adv. Electron. Electron Phys. 36, 265 (1974)CrossRefGoogle Scholar
  3. 3.
    H. Leiter, J. Kuhmann, R. Kukies, J.P. Porst, Results from the RIT-22 technology maturity demonstration activity, in Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, Ohio, 2014, Proceeding AIAA 2014-3421Google Scholar
  4. 4.
    R. Killinger, R. Kukies, M. Surauer, Orbit Raising with Ion Propulsion on ESA’s ARTEMIS Satellite, in Proceedings of the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, Indianapolis, IN, 2002, Proceeding AIAA-2002-3672Google Scholar
  5. 5.
    P. Chabert, N. Braithwaite, Physics of Radio-Frequency Plasmas (Cambridge University Press, Cambridge, UK, 2011)Google Scholar
  6. 6.
    A. Lieberman, M. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (John Wiley & Sons, Hoboken, NJ, 2005)Google Scholar
  7. 7.
    D. Goebel, I. Katz, Fundamentals of Electric Propulsion: Ion and Hall Thrusters (John Wiley & Sons, Hoboken, NJ, 2008)Google Scholar
  8. 8.
    R.B. Piejak, V.A. Godyak, B.M. Alexandrovich, Plasma Sources Sci. Technol. 1, 179 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    J.T. Gudmundsson, M.A. Liebermann, Plasma Sources Sci. Technol. 6, 540 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    M.M. Tsay, Simple performance modeling of a radio-frequency ion thruster, in Proceedings of the 30th International Electric Propulsion Conference, Florence, Italy, 2007, Proceeding IEPC-2007-072Google Scholar
  11. 11.
    D.M. Goebel, IEEE Trans. Plasma Sci. 36, 2111 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    C. Volkmar, U. Ricklefs, Eur. Phys. J. D 69, 227 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Dobkevicius, D. Feili, Eur. Phys. J. D 70, 227 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    M. Dobkevicius, D. Feili, J. Propul. Power 44, 940 (2017)Google Scholar
  15. 15.
    C. Volkmar, A. Neumann, C. Geile, K. Hannemann, Real-time in situ determination of inductively coupled power and numerical prediction of power distribution in RF ion thrusters, in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, 2017, Proceeding IEPC-2017-161Google Scholar
  16. 16.
    Fortran program, MAGBOLTZ, S.F. Biagi, versions 8.97, Biagi database,
  17. 17.
    R.P. McEachran, A.D. Stauffer, Eur. Phys. J. D 68, 153 (2014), COP database, ADSCrossRefGoogle Scholar
  18. 18.
    R. Henrich, Development of a plasma simulation tool for Radio Frequency Ion Thrusters, Ph.D. dissertation, I. Physikalisches Institut, Justus Liebig-Universität, Giessen, Germany, 2013Google Scholar
  19. 19.
    A. Bondi, J. Phys. Chem. 68, 441 (1964)CrossRefGoogle Scholar
  20. 20.
    R. Henrich, D. Feili, C. Heiliger, Self-consistent Simulation of the Coupling Between Plasma and Neutral Gas in μN-RIT, in , Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany, 2011, Proceeding IEPC-2011-323Google Scholar
  21. 21.
    K. Jousten (ed.), Wutz Handbuch Vakuumtechnik (Vieweg + Teubner, Wiesbaden, Germany, 2010)Google Scholar
  22. 22.
    D. Hanel, Molekulare Gasdynamik, Einfhrung in die kinetische Theorie der Gase und Lattice-Boltzmann-Methode (Springer, Berlin, Germany, 2004)Google Scholar
  23. 23.
    M. Schäfer, Plasmadiagnostik und Energiebilanzuntersuchung an dem HF-Ionentriebwerk RIT 10, Ph.D. dissertation, Naturwissenschaftliche Fakulät der Justus Liebig-Universität, Gießen, Germany, 1971Google Scholar
  24. 24.
    N.S. Mühlich, K. Holste, P.J. Klar, Near-field beam diagnostics for radio-frequency ion thrusters RIT, in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, GA, USA, 2017Google Scholar
  25. 25.
    V.A. Godyak, Soviet Radio Frequency Discharge Research (Delphic Associates, Falls Church, VA, 1986)Google Scholar
  26. 26.
    V. Godyak, N. Sternberg, Plasma Sources Sci. Technol. 17, 025004 (2008)CrossRefGoogle Scholar
  27. 27.
    W.L. Briggs, H. Van Emden, S.F. McCormick, A Multigrid Tutorial, 2nd edn. (SIAM, 2000)Google Scholar
  28. 28.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, Hoboken, NJ, 1998)Google Scholar
  29. 29.
    A. Reeh, U. Probst, P.J. Klar, 3D ion extraction code incorporated self-consistently into a numerical model of a radio-frequency ion thruster, in Proceedings of the 35th International Electric Propulsion Conference, Atlanta, Georgia, 2017, Proceeding IEPC-2017-326Google Scholar
  30. 30.
    T. Kalvas, O. Tarvainen, T. Ropponen, O. Steczkiewicz, J. Ärje, H. Clar, Rev. Sci. Instrum. 81, 02B703 (2010)CrossRefGoogle Scholar
  31. 31.
    T. Kalvas, Development and use of computational tools for modelling negative hydrogen ion source extraction systems, Ph.D. dissertation, Faculty of Mathematics and Natural Sciences, University of Jyväskylä, Jyväskylä, Finland, 2013Google Scholar
  32. 32.
    C.C. Farnell, Performance and lifetime simulation of ion thruster optics, Ph.D. dissertation, Colorado State University, Fort Collins, 2007Google Scholar
  33. 33.
    C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation, 1st edn. (Adam Hilger, Bristol, Philadelphia, New York, 1991)Google Scholar
  34. 34.
    J. Simon, U. Probst, P.J. Klar, Trans. JSASS Aerospace Tech. Jpn. 14, Pb_33 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Simon, Entwicklung und Aufbau eines Radiofrequenzgenerators zur Versorgung und elektrischen Charakterisierung induktiv-gekoppelter Plasmen in Radiofrequenz-Ionentriebwerken, Ph.D. dissertation, I. Physikalisches Institut, Justus Liebig-Universität, Giessen, Germany, 2016Google Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Applied SciencesGiessenGermany
  2. 2.University of GiessenGiessenGermany

Personalised recommendations