Advertisement

Structure and properties of (AlB2)n and (MgB2)n (n = 1, …, 10) clusters

  • Alexander S. SharipovEmail author
  • Boris I. Loukhovitski
Regular Article
  • 146 Downloads

Abstract

A systematic search for energetically lowest lying structures of neutral (AlB2)n and (MgB2)n clusters with n = 1, …, 10 is performed using density functional theory within a multistep hierarchical algorithm specially adapted for the global optimization of relatively large structures. For obtained clusters, different physical properties (energetic, electrostatic, electronic, and thermodynamic) are determined. The variation of these properties with increasing cluster size is discussed in detail. The bulk values of binding energy, specific zero point energy, ionization potential, electron affinity, collision diameter and formation enthalpy for aluminum and magnesium diborides have been obtained by means of physically sound extrapolation of the calculated data to the particles of infinite size. The temperature-dependent thermodynamic functions of (AlB2)n and (MgB2)n clusters, such as enthalpy, entropy, specific heat capacity, and reduced Gibbs energy, are evaluated with allowance for vibrational anharmonicity and for the existence of excited electronic states. The appropriate data are fitted to seven-parameter NASA (Chemkin) polynomials. The approximations of the reduced Gibbs energy applicable for extrapolation towards large clusters and even small nanoparticles are also elaborated.

Graphical abstract

Keywords

Clusters and Nanostructures 

Supplementary material

References

  1. 1.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    N.I. Medvedeva, A.L. Ivanovskii, J.E. Medvedeva, A.J. Freeman, Phys. Rev. B 64, 020502 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    J. Nakamura, S.Y. Nasubida et al., Phys. Rev. B 68, 064515 (2003) ADSCrossRefGoogle Scholar
  4. 4.
    V.V. Ivanovskaya, A.N. Enyashin, A.L. Ivanovskii, Inorg. Mater. 40, 134 (2004) CrossRefGoogle Scholar
  5. 5.
    U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, W. Schnelle, A. Yaresko, Y. Grin, J. Solid State Chem. 177, 389 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    G. Severa, E. Rönnebro, C.M. Jensen, Chem. Commun. 46, 421 (2010) CrossRefGoogle Scholar
  7. 7.
    T.R. Galeev, C. Romanescu, W.L. Li, L.S. Wang, A.I. Boldyrev, J. Chem. Phys. 135, 104301 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    W.L. Li, C. Romanescu, T.R. Galeev, L.S. Wang, A.I. Boldyrev, J. Phys. Chem. A 115, 10391 (2011) CrossRefGoogle Scholar
  9. 9.
    M.J. van Setten, G.A. de Wijs, M. Fichtner, G. Brocks, Chem. Mater. 20, 4952 (2008) CrossRefGoogle Scholar
  10. 10.
    G.L. Soloveichik, Y. Gao, J. Rijssenbeek, M. Andrus, S. Kniajanski, R.C. Bowman Jr, S.J. Hwang, J.C. Zhao, Int. J. Hydrogen Energy 34, 916 (2009) CrossRefGoogle Scholar
  11. 11.
    K.T. Möller, A.S. Fogh, M. Paskevicius, J. Skibsted, T.R.R. Jensen, Phys. Chem. Chem. Phys. 18, 27545 (2016) CrossRefGoogle Scholar
  12. 12.
    M.L. Whittaker, R.A. Cutler, P.E. Anderson, Mater. Res. Soc. Symp. Proc. 1405, Mrsf111405y1102 (2012) CrossRefGoogle Scholar
  13. 13.
    Y. Guo, W. Zhang, X. Zhou, B. Bao, J. Therm. Anal. Calorim. 113, 787 (2013) CrossRefGoogle Scholar
  14. 14.
    M.N. Makhov, Rus. J. Phys. Chem. B 9, 50 (2015) CrossRefGoogle Scholar
  15. 15.
    S. Xu, Y. Chen, X. Chen, D. Wu, D. Liu, Combust. Explos. Shock Waves 52, 342 (2016) CrossRefGoogle Scholar
  16. 16.
    D.A. Yagodnikov, A.V. Voronetskii, V.I. Sarab’ev, Combust. Explos. Shock Waves 52, 300 (2016) CrossRefGoogle Scholar
  17. 17.
    X. Liu, K.L. Chintersingh, M. Schoenitz, E.L. Dreizin, J. Propul. Power 34, 787 (2018) CrossRefGoogle Scholar
  18. 18.
    B.I. Lukhovitskii, A.S. Sharipov, J. Eng. Phys. Thermophys. 91, 766 (2018) CrossRefGoogle Scholar
  19. 19.
    M.A. Korchagin, A.I. Gavrilov, B.B. Bokhonov, N.V. Bulina, V.E. Zarko, Combust. Expl. Shock Waves 54, 424 (2018) CrossRefGoogle Scholar
  20. 20.
    S. Polarz, in Encyclopedia of Nanoscience and Nanotechnology (American Scientific Publishers, 2004), Vol. 6, pp. 179–196 Google Scholar
  21. 21.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005) ADSCrossRefGoogle Scholar
  22. 22.
    E. Roduner, Chem. Soc. Rev. 35, 583 (2006) CrossRefGoogle Scholar
  23. 23.
    R.S. Berry, B.M. Smirnov, Comput. Theor. Chem. 1021, 2 (2013) CrossRefGoogle Scholar
  24. 24.
    A.W. Castleman Jr S.N. Khanna, J. Phys. Chem. C 113, 2664 (2009) CrossRefGoogle Scholar
  25. 25.
    Z. Wei, W. Jiang, Z. Bai, Z. Lian, Z. Wang, F. Song, Eur. Phys. J. D 71, 237 (2017) ADSCrossRefGoogle Scholar
  26. 26.
    A. Pinkard, A.M. Champsaur, X. Roy, Acc. Chem. Res. 51, 919 (2018) CrossRefGoogle Scholar
  27. 27.
    E. Roduner, Phys. Chem. Chem. Phys. 20, 23812 (2018) CrossRefGoogle Scholar
  28. 28.
    A.M. Starik, A.S. Sharipov, B.I. Loukhovitski, A.M. Savelév, Phys. Scr. 91, 013004 (2016) ADSCrossRefGoogle Scholar
  29. 29.
    D. Sundaram, V. Yang, R.A. Yetter, Prog. Energy Combust. Sci. 61, 293 (2017) CrossRefGoogle Scholar
  30. 30.
    S. Zhou, T. Nozaki, X. Pi, J. Phys. D: Appl. Phys 51, 025305 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    I. Moullet, J.L. Martins, F. Reuse, J. Buttet, Phys. Rev. Lett. 65, 476 (1990) ADSCrossRefGoogle Scholar
  32. 32.
    S. Neukermans, N. Veldeman, E. Janssens, P. Lievens, Z. Chen, P.v.R. Schleyer, Eur. Phys. J. D 45, 301 (2007) ADSCrossRefGoogle Scholar
  33. 33.
    X.J. Feng, Y.H. Luo, J. Phys. Chem. A 111, 2420 (2007) CrossRefGoogle Scholar
  34. 34.
    M. Boyukata, Z.B. Guvenc, J. Alloys Compd. 509, 4214 (2011) CrossRefGoogle Scholar
  35. 35.
    X.L. Lei, J. Clust. Sci. 22, 159 (2011) CrossRefGoogle Scholar
  36. 36.
    J.Z. Yu, F.Q. Zhao, S.Y. Xu, X.H. Ju, J. Serb. Chem. Soc. 82, 163 (2017) CrossRefGoogle Scholar
  37. 37.
    B.I. Loukhovitski, A.S. Sharipov, A.M. Starik, Chem. Phys. 493, 61 (2017) CrossRefGoogle Scholar
  38. 38.
    Q.L. Lu, Q.Q. Luo, Chem. Phys. Lett. 710, 26 (2018) ADSCrossRefGoogle Scholar
  39. 39.
    D. Rodriguez, D. Soto, E. Ramirez, A. Cruz, A. Santana, G.E. Lopez, Res. Lett. Phys. 2008, 879017 (2008) CrossRefGoogle Scholar
  40. 40.
    Y.Y. Wu, F.Q. Zhao, X.H. Ju, Comput. Theor. Chem. 1027, 151 (2014) CrossRefGoogle Scholar
  41. 41.
    Y.Y. Wu, S.Y. Xu, F.Q. Zhao, X.H. Ju, J. Clust. Sci. 26, 983 (2015) CrossRefGoogle Scholar
  42. 42.
    A.C. Reber, S.N. Khanna, J. Chem. Phys. 142, 054304 (2015) ADSCrossRefGoogle Scholar
  43. 43.
    Y.J. Wang, L.Y. Feng, J.C. Guo, H.J. Zhai, Chem. Asian J. 12, 2899 (2017) CrossRefGoogle Scholar
  44. 44.
    G. Rossi, R. Ferrando, J. Phys.: Condens. Matter 21, 084208 (2009) ADSGoogle Scholar
  45. 45.
    F. Avaltroni, C. Corminboeuf, J. Comput. Chem. 33, 502 (2012) CrossRefGoogle Scholar
  46. 46.
    S. Heiles, R.L. Johnston, Int. J. Quantum Chem. 113, 2091 (2013) CrossRefGoogle Scholar
  47. 47.
    H. Yang, H. Chen, Eur. Phys. J. D 71, 191 (2017) ADSCrossRefGoogle Scholar
  48. 48.
    B. Hartke, Eur. Phys. J. D 24, 57 (2003) ADSCrossRefGoogle Scholar
  49. 49.
    S.E. Schönborn, S. Goedecker, S. Roy, A.R. Oganov, J. Chem. Phys. 130, 144108 (2009) ADSCrossRefGoogle Scholar
  50. 50.
    R.P.F. Kanters, K.J. Donald, J. Chem. Theory Comput. 10, 5729 (2014) CrossRefGoogle Scholar
  51. 51.
    B.I. Loukhovitski, A.S. Sharipov, A.M. Starik, Eur. Phys. J. D 70, 250 (2016) ADSCrossRefGoogle Scholar
  52. 52.
    R.H. Leary, J. Global Optim. 11, 35 (1997) MathSciNetCrossRefGoogle Scholar
  53. 53.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985) CrossRefGoogle Scholar
  54. 54.
    D.N. Laikov, J. Chem. Phys. 135, 134120 (2011) ADSCrossRefGoogle Scholar
  55. 55.
    D.N. Laikov, Priroda 14, Quantum Chemical Program (Lomonosov Moscow State University, Moscow (Russian Federation), 2014) Google Scholar
  56. 56.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) ADSCrossRefGoogle Scholar
  57. 57.
    P.J. Wilson, T.J. Bradley, D.J. Tozer, J. Chem. Phys. 115, 9233 (2001) ADSCrossRefGoogle Scholar
  58. 58.
    Y. Tantirungrotechai, K. Phanasant, S. Roddecha, P. Surawatanawong, V. Sutthikhum, J. Limtrakul, J. Mol. Struct. (Theochem.) 760, 189 (2006) CrossRefGoogle Scholar
  59. 59.
  60. 60.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993) CrossRefGoogle Scholar
  61. 61.
    N.E. Schultz, Y. Zhao, D.G. Truhlar, J. Phys. Chem. A 109, 11127 (2005) CrossRefGoogle Scholar
  62. 62.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, Eur. Phys. J. D 69, 211 (2015) ADSCrossRefGoogle Scholar
  63. 63.
    L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 127, 124105 (2007) ADSCrossRefGoogle Scholar
  64. 64.
    C.W. Bauschlicher Jr, S.R. Langhoff, J. Chem. Phys. 101, 80 (1994) ADSCrossRefGoogle Scholar
  65. 65.
    G.L. Gutsev, P. Jena, R.J. Bartlett, J. Chem. Phys. 110, 2928 (1999) ADSCrossRefGoogle Scholar
  66. 66.
    E.P.F. Lee, T.G. Wright, J. Phys. Chem. A 108, 7424 (2004) CrossRefGoogle Scholar
  67. 67.
    M. Pelegrini, O. Roberto-Neto, F.B.C. Machado, Int. J. Quantum Chem. 95, 205 (2003) CrossRefGoogle Scholar
  68. 68.
    D. Tzeli, A. Mavridis, J. Phys. Chem. A 109, 10663 (2005) CrossRefGoogle Scholar
  69. 69.
    I.M. Alecu, J. Zheng, Y. Zhao, D.G. Truhlar, J. Chem. Theory Comput. 6, 2872 (2010) CrossRefGoogle Scholar
  70. 70.
    A.S. Sharipov, B.I. Loukhovitski, C.J. Tsai, A.M. Starik, Eur. Phys. J. D 68, 99 (2014) ADSCrossRefGoogle Scholar
  71. 71.
    G.A. Andrienko, Chemcraft version 1.8, https://doi.org/www.chemcraftprog.com
  72. 72.
    H.A. Kurtz, J.J. Stewart, K.M. Dieter, J. Comput. Chem. 11, 82 (1990) CrossRefGoogle Scholar
  73. 73.
    M.G. Medvedev, I.S. Bushmarinov, J. Sun, J.P. Perdew, K.A. Lyssenko, Science 355, aah5975 (2017) CrossRefGoogle Scholar
  74. 74.
    D. Hait, M. Head-Gordon, J. Chem. Theory Comput. 14, 1969 (2018) CrossRefGoogle Scholar
  75. 75.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, J. Phys. B: At. Mol. Opt. Phys. 50, 165101 (2017) ADSCrossRefGoogle Scholar
  76. 76.
    B.I. Loukhovitski, S.A. Torokhov, E.E. Loukhovitskaya, A.S. Sharipov, Struct. Chem. 29, 49 (2018) CrossRefGoogle Scholar
  77. 77.
    A. Aguado, A. Vega, L.C. Balbas, Phys. Rev. B 84, 165450 (2011) ADSCrossRefGoogle Scholar
  78. 78.
    F. Egidi, T. Giovannini, M. Piccardo, J. Bloino, C. Cappelli, V. Barone, J. Chem. Theory Comput. 10, 2456 (2014) CrossRefGoogle Scholar
  79. 79.
    P. Jaque, A. Toro-Labbe, J. Chem. Phys. 117, 3208 (2002) ADSCrossRefGoogle Scholar
  80. 80.
    F. Jensen, Introduction to Computational Chemistry, 2nd edn. (John Wiley & Sons, Ltd, 2007) Google Scholar
  81. 81.
    J.C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer, S. Nandi, G.B. Ellison, Chem. Rev. 102, 231 (2002) CrossRefGoogle Scholar
  82. 82.
    A.A. Zavitsas, J. Phys. Chem. 91, 5573 (1987) CrossRefGoogle Scholar
  83. 83.
    A. Dreuw, M. Head-Gordon, Chem. Rev. 105, 4009 (2005) CrossRefGoogle Scholar
  84. 84.
    M. Gronowski, Comput. Theor. Chem. 1108, 50 (2017) CrossRefGoogle Scholar
  85. 85.
    W.M.F. Fabian, Monatsh. Chem. 139, 309 (2008) CrossRefGoogle Scholar
  86. 86.
    A. Gany, D.W. Netzer, Int. J. Turbo Jet Eng. 2, 157 (1985) ADSGoogle Scholar
  87. 87.
    D.C. Young, Computational chemistry: A Practical Guide for Applying Techniques to Real-World Problems (John Wiley & Sons, Inc., 2004) Google Scholar
  88. 88.
    R.L. Johnston, Phil. Trans. R. Soc. Lond. A 356, 211 (1998) ADSCrossRefGoogle Scholar
  89. 89.
    M.J. van Setten, M. Fichtner, J. Alloys Compd. 477, L11 (2009) CrossRefGoogle Scholar
  90. 90.
    J. Wang, G. Wang, J. Zhao, Phys. Rev. B 66, 035418 (2002) ADSCrossRefGoogle Scholar
  91. 91.
    B. Assadollahzadeh, S. Schafer, P. Schwerdtfeger, J. Comput. Chem. 31, 929 (2010) Google Scholar
  92. 92.
    C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001) ADSCrossRefGoogle Scholar
  93. 93.
    Z. Xiao-Lin, L. Ke, C. Xiang-Rong, Z. Jun, Chin. Phys. 15, 3014 (2006) ADSCrossRefGoogle Scholar
  94. 94.
    L.D. Landau, E.M. Lifshitz, Statistical physics Part 1. V. 5: Course of theoretical physics (Pergamon Press, 1968) Google Scholar
  95. 95.
    B. Farid, R.W. Godby, Phys. Rev. B 43, 14248 (1991) ADSCrossRefGoogle Scholar
  96. 96.
    W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993) ADSCrossRefGoogle Scholar
  97. 97.
    S. Heiles, R. Schäfer, Dielectric Properties of Isolated Clusters: Beam Deflection Studies (Springer, Dordrecht, Netherlands, 2014) Google Scholar
  98. 98.
    S. Schäfer, B. Assadollahzadeh, M. Mehring, P. Schwerdtfeger, R. Schäfer, J. Phys. Chem. A 112, 12312 (2008) CrossRefGoogle Scholar
  99. 99.
    K.D. Bonin, V.V. Kresin, Electric-dipole polarizabilities of atoms, molecules, and clusters (World Scientific, Singapore, 1997) Google Scholar
  100. 100.
    I.G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley, Hoboken, NJ, 2006) Google Scholar
  101. 101.
    E. Benichou, R. Antoine, D. Rayane, B. Vezin, F.W. Dalby, P. Dugourd, M. Broyer, C. Ristori, F. Chandezon, B.A. Huber, J.C. Rocco, S.A. Blundell, C. Guet, Phys. Rev. A 59, R1 (1999) ADSCrossRefGoogle Scholar
  102. 102.
    S.A. Blundell, C. Guet, R.R. Zope, Phys. Rev. Lett. 84, 4826 (2000) ADSCrossRefGoogle Scholar
  103. 103.
    D.R. Snider, R.S. Sorbello, Phys. Rev. B 28, 5702 (1983) ADSCrossRefGoogle Scholar
  104. 104.
    V.S. Fomenko, Handbook of thermionic properties: electronic work functions and Richardson constants of elements and compounds (Plenum Press Data Division, 1966) Google Scholar
  105. 105.
    A. Mezzi, P. Soltani, S. Kaciulis, A. Bellucci, M. Girolami, M. Mastellone, D.M. Trucchi, Surf. Interface Anal. 50, 1138 (2018) CrossRefGoogle Scholar
  106. 106.
    L.V. Gurvich, I.V. Veyts, C.B. Alcock, Thermodynamics Properties of Individual Substances (Hemisphere Pub. Co., New York, New York, 1989) Google Scholar
  107. 107.
    I. Glassman, R.A. Yetter, Combustion, 4th edn. (Elsevier, 2008) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Central Institute of Aviation MotorsMoscowRussia

Personalised recommendations