Evaluation of differential cross sections using classical two-active electron models for He

  • Nicolás BachiEmail author
  • Sebastian Otranto
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)


Differential cross sections for charge-exchange and single and double electronic emission in collisions of protons with He atoms at intermediate impact energies are theoretically evaluated by means of two classical trajectory Monte Carlo methods. These models incorporate momentum-dependent terms to the Hamiltonian in order to avoid the classical autoionization of He. The theoretical results for single capture and single ionization are compared to available experimental data. The role of the electron–electron correlation effects in double ionization processes is analyzed by inspecting the angular and energetic dependence of the electronic emission spectra at different impact energies.

Graphical abstract


  1. 1.
    M.L. McKenzie, R.E. Olson, Phys. Rev. A 35, 2863 (1987) ADSCrossRefGoogle Scholar
  2. 2.
    J.S. Cohen, Phys. Rev. A 36, 2024 (1987) ADSCrossRefGoogle Scholar
  3. 3.
    A.E. Wetmore, R.E. Olson, Phys. Rev. A 38, 5563 (1988) ADSCrossRefGoogle Scholar
  4. 4.
    V.J. Montemayor, G. Schiwietz, Phys. Rev. A 40, 6223 (1989) ADSCrossRefGoogle Scholar
  5. 5.
    T. Geyer, J.M. Rost, J. Phys. B: At. Mol. Opt. Phys. 36, L107 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    T. Geyer, J. Phys. B: At. Mol. Opt. Phys. 37, 1215 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    C.L. Kirschbaum, L. Wilets, Phys. Rev. A 21, 834 (1980) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Zajfman, D. Maor, Phys. Rev. Lett. 56, 320 (1986) ADSCrossRefGoogle Scholar
  9. 9.
    J.S. Cohen, Phys. Rev. A 54, 573 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    N. Bachi, S. Otranto, Eur. Phys. J. D 72, 127 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    S. Morita, N. Matsuda, N. Toshima, K. Hino, Phys. Rev. A 66, 042719 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    Y. Zhou, C. Huang, Q. Liao, P. Lu, Phys. Rev. Lett. 109, 053004 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    P.J. Martin, K. Arnett, D.M. Blankenship, T.J. Kvale, J.L. Peacher, E. Redd, V.C. Sutcliffe, J.T. Park, C.D. Lin, J.H. McGuire, Phys. Rev. A 23, 2858 (1981) ADSCrossRefGoogle Scholar
  14. 14.
    P. Focke, R.E. Olson, N.D. Cariatore, M. Alessi, S. Otranto, Phys. Rev. A 95, 052707 (2017) ADSCrossRefGoogle Scholar
  15. 15.
    A. Velayati, E. Bhanbari-Adivi, Eur. Phys. J. D 72, 100 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    Th. Weber, Kh. Kayyat, R. Dörner, V.D. Rodríguez, V. Mergel, O. Jagutzki, L. Schmidt, K.A. Müller, F. Afaneh, A. Gonzalez, H. Schmidt-Böcking, Phys. Rev. Lett. 86, 224 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    M.B. Shah, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 18, 899 (1985) ADSCrossRefGoogle Scholar
  18. 18.
    M.B. Shah, P. McCallion, H.B. Gilbody, J. Phys. B: At. Mol. Opt. Phys. 22, 3037 (1989) ADSCrossRefGoogle Scholar
  19. 19.
    S.D. Kravis, M. Abdallah, C.L. Cocke, C.D. Lin, M. Stockli, B. Walch, Y.D. Wang, R.E. Olson, V.D. Rodríguez, W. Wu, M. Pieksma, N. Watanabe, Phys. Rev. A 54, 1394 (1996) ADSCrossRefGoogle Scholar
  20. 20.
    D. Fischer, R. Moshammer, A. Dorn, J.R. Crespo López-Urrutia, B. Feuerstein, C. Höhr, C.D. Schröter, S. Hagmann, H. Kollmus, R. Mann, B. Bapat, J. Ullrich, Phys. Rev. Lett. 90, 243201 (2003) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Física del Sur (IFISUR), Departamento de Física, Universidad Nacional del Sur (UNS), CONICETBahía BlancaArgentina

Personalised recommendations