Holographic interferences in photoelectron spectra: different approaches

  • Sebastián D. LópezEmail author
  • Diego G. Arbó
Regular Article
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (2018)


We perform a theoretical study of the holographic structures in photoelectron spectra for ionization of hydrogen atoms induced by short laser pulses. To elucidate the nature of the holographic structures present in the momentum distributions of photoelectrons, we use several quantum approximations, such as the strong field and Coulomb–Volkov approximations up to second order, as well as semiclassical Monte Carlo simulations. In a single-cycle pulse, we eliminate the intracycle interference from the spectra isolating the holographic structure formed in the photoionization process. We probe the different approaches and analyze the role of electron–core interaction numerically by solving the time dependent Schrödinger equation. We show that the two-step semiclassical model of Shvetsov-Shilovski et al. [Phys. Rev. A 94, 013415 (2016)] fully considers the effect of the Coulomb potential on the electron dynamics and semiclassical phase reproducing the holographic structure in full quantum calculations. Contrarily, perturbative quantum (strong field and Coulomb–Volkov) and semiclassical (quantum trajectory Monte Carlo) methods account only partially for some of the characteristics of the holographic interference pattern.

Graphical abstract


  1. 1.
    P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979) ADSCrossRefGoogle Scholar
  2. 2.
    P. Agostini, L.F. DiMauro, Adv. At. Mol. Opt. Phys. 61, 117 (2012) ADSCrossRefGoogle Scholar
  3. 3.
    W. Becker, S.P. Goreslavski, D.B. Milošević, G.G. Paulus, J. Phys. B: At. Mol. Opt. Phys. 47, 204022 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    D.G. Arbó, K.L. Ishikawa, K. Schiessl, E. Persson, J. Burgdörfer, Phys. Rev. A 81, 021403 (2010) ADSCrossRefGoogle Scholar
  5. 5.
    S. Borbély, A. Tóth, K. Tőkési, L. Nagy, Phys. Rev. A 87, 013405 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    Y. Huismans, A. Rouzée, A. Gijsbertsen, J.H. Jungmann, A.S. Smolkowska, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko et al., Science 331, 61 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Huismans, A. Gijsbertsen, A.S. Smolkowska, J.H. Jungmann, A. Rouzée, P.S.W.M. Logman, F. Lépine, C. Cauchy, S. Zamith, T. Marchenko et al., Phys. Rev. Lett. 109, 013002 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    N.I. Shvetsov-Shilovski, M. Lein, Phys. Rev. A 97, 013411 (2018) ADSCrossRefGoogle Scholar
  9. 9.
    A. L’huillier, M. Lewenstein, P. Salières, P. Balcou, M.Y. Ivanov, J. Larsson, C.G. Wahlström, Phys. Rev. A 48, R3433 (1993) ADSCrossRefGoogle Scholar
  10. 10.
    G.G. Paulus, W. Becker, W. Nicklich, H. Walther, J. Phys. B: At. Mol. Opt. Phys. 27, L703 (1994) ADSCrossRefGoogle Scholar
  11. 11.
    G.G. Paulus, W. Becker, H. Walther, Phys. Rev. A 52, 4043 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    W. Becker, F. Grasbon, R. Kopold, D.B. Milošević, G.G. Paulus, H. Walther, Adv. At. Mol. Opt. Phys. 48, 35 (2002) ADSCrossRefGoogle Scholar
  13. 13.
    N. Suárez, A. Chacón, M.F. Ciappina, J. Biegert, M. Lewenstein, Phys. Rev. A 92, 063421 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    M. Lewenstein, K.C. Kulander, K.J. Schafer, P.H. Bucksbaum, Phys. Rev. A 51, 1495 (1995) ADSCrossRefGoogle Scholar
  15. 15.
    G. Porat, G. Alon, S. Rozen, O. Pedatzur, M. Krüger, D. Azoury, A. Natan, G. Orenstein, B. Bruner, M. Vrakking et al., Nat. Commun. 9, 2805 (2018) ADSCrossRefGoogle Scholar
  16. 16.
    F.H.M. Faisal, J. Phys. B: At. Mol. Phys. 6, L89 (1973) ADSCrossRefGoogle Scholar
  17. 17.
    H.R. Reiss, Phys. Rev. A 22, 1786 (1980) ADSCrossRefGoogle Scholar
  18. 18.
    M.S. Gravielle, D.G. Arbó, J.E. Miraglia, M.F. Ciappina, J. Phys. B: At. Mol. Phys. 45, 015601 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    P.A. Macri, J.E. Miraglia, M.S. Gravielle, J. Opt. Soc. Am. B, Opt. Phys. 20, 1801 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    N.I. Shvetsov-Shilovski, D. Dimitrovski, L.B. Madsen, Phys. Rev. A 85, 023428 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    M. Li, J.W. Geng, H. Liu, Y. Deng, C. Wu, L.Y. Peng, Q. Gong, Y. Liu, Phys. Rev. Lett. 112, 113002 (2014) ADSCrossRefGoogle Scholar
  22. 22.
    N.I. Shvetsov-Shilovski, M. Lein, L.B. Madsen, E. Räsänen, C. Lemell, J. Burgdörfer, D.G. Arbó, K. Tőkési, Phys. Rev. A 94, 013415 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    D.B. Milošević, F. Ehlotzky, Phys. Rev. A 57, 5002 (1998) ADSCrossRefGoogle Scholar
  24. 24.
    X.M. Tong, S.I. Chu, Chem. Phys. 217, 119 (1997) CrossRefGoogle Scholar
  25. 25.
    X.M. Tong, S.I. Chu, Phys. Rev. A 61, 031401 (2000) ADSCrossRefGoogle Scholar
  26. 26.
    X.M. Tong, C.D. Lin, J. Phys. B: At. Mol. Opt. Phys. 38, 2593 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    O. Schöller, J.S. Briggs, R.M. Dreizler, J. Phys. B: At. Mol.Phys. 19, 2505 (1986) ADSCrossRefGoogle Scholar
  28. 28.
    A. Messiah, in Quantum mechanics (North-, New York, 1965), Vols. I and II Google Scholar
  29. 29.
    S. Dionissopoulou, T. Mercouris, A. Lyras, C.A. Nicolaides, Phys. Rev. A 55, 4397 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    D.G. Arbó, K. Tőkési, J.E. Miraglia, Eur. Phys. J. D 51, 303 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    D.G. Arbó, C. Lemell, S. Nagele, N. Camus, L. Fechner, A. Krupp, T. Pfeifer, S.D. López, R. Moshammer, J. Burgdörfer, Phys. Rev. A 92, 023402 (2015) ADSCrossRefGoogle Scholar
  32. 32.
    K.I. Dimitriou, D.G. Arbó, S. Yoshida, E. Persson, J. Burgdörfer, Phys. Rev. A 70, 061401 (2004) ADSCrossRefGoogle Scholar
  33. 33.
    M. Dran, D.G. Arbó, Phys. Rev. A 97, 053406 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Astronomía y Física del Espacio, IAFE (CONICET-UBA)Buenos AiresArgentina

Personalised recommendations