Direct comparison of pulsed spark discharges in air and water by synchronized electrical and optical diagnostics

  • Hans HöftEmail author
  • Tom Huiskamp
Regular Article


In this study, a direct comparison was made between pulsed spark discharges in air and water in sub-mm gaps. The discharges were ignited at atmospheric pressure in the same discharge arrangement for air and water, using a solid-state microsecond pulse source with ≈1 μs voltage rise time (Umax up to 37 kV). Fast voltage and current measurements were synchronized with iCCD imaging with high spatial resolution on symmetrical half-sphere tungsten electrodes (electrode gaps of up to 0.7 mm for air and 0.3 mm for water). The breakdown voltage and electrical field strength, maximal current, transferred charge, consumed electrical energy and discharge emission structure (e.g. discharge channel diameters) was obtained for all cases. Using the synchronization of the electrical data and the iCCD imaging, current and energy densities were estimated for the sparks in air and water. It was found that the breakdown voltage, the discharge current, the transferred charge, and the consumed electrical energy increase with the gap distance, and that this dependency is much stronger for discharges in water (compared to air). Due to the use of the same discharge arrangement and the same applied voltage, the difference in the discharge characteristics was directly quantified.

Graphical abstract


Plasma Physics 


  1. 1.
    L.B. Loeb, J.M. Meek, J. Appl. Phys. 11, 438 (1940) Google Scholar
  2. 2.
    L.B. Loeb, J.M. Meek, J. Appl. Phys. 11, 459 (1940) Google Scholar
  3. 3.
    J.M. Meek, J.D. Craggs, Electrical Breakdown of Gases (John Wiley & Sons Inc., New York, 1978) Google Scholar
  4. 4.
    E.M. Bazelyan, Y.P. Raizer, Spark Discharge (CRC Press LLC, Boca Raton, 1991) Google Scholar
  5. 5.
    E. Marode, J. Appl. Phys. 46, 2005 1975 Google Scholar
  6. 6.
    G. Naidis, J. Phys. D 32, 2649 (1999) CrossRefGoogle Scholar
  7. 7.
    J.F. Kolb, R.P. Joshi, S. Xiao, K.H. Schoenbach, J. Phys. D 41, 234007 (2008) CrossRefGoogle Scholar
  8. 8.
    O. Lesaint, J. Phys. D 49, 144001 (2016) CrossRefGoogle Scholar
  9. 9.
    A. Nikuradse, Z. Phys. 84, 701 (1933) CrossRefGoogle Scholar
  10. 10.
    P.J. Bruggeman, C. Leys, J. Phys. D 42, 053001 (2009) CrossRefGoogle Scholar
  11. 11.
    S. Gershman, A. Belkind, Eur. Phys. J. D 60, 661 (2010) CrossRefGoogle Scholar
  12. 12.
    B. Pongrác, H.H. Kim, N. Negishi, Z. Machala, Eur. Phys. J. D 68, 224 (2014) CrossRefGoogle Scholar
  13. 13.
    P.J. Bruggeman et al., Plasma Sources Sci. Technol. 25, 053002 (2016) CrossRefGoogle Scholar
  14. 14.
    Y. Yang, Y.I. Cho, A. Fridman, Plasma Discharge in Liquid: Water Treatment and Applications (CRC Press, 2012) Google Scholar
  15. 15.
    M.J. Traylor, M.J. Pavlovich, S. Karim, P. Hait, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D 44, 472001 (2011) CrossRefGoogle Scholar
  16. 16.
    A.J.M. Pemen, P.P. van Ooij, F.J.C.M. Beckers, W.F.L.M. Hoeben, A.M.C.B. Koonen-Reemst, T. Huiskamp, P.H.M. Leenders, IEEE Trans. Plasma Sci. 45, 2725 (2017) CrossRefGoogle Scholar
  17. 17.
    W. Greason, Z. Kucerovsky, S. Bulach, M. Flatley, IEEE Trans. Ind. Appl. 33, 1519 (1997) CrossRefGoogle Scholar
  18. 18.
    J. Palomares, A. Kohut, G. Galbács, R. Engeln, Z. Geretovszky, J. Appl. Phys. 118, 233305 (2015) CrossRefGoogle Scholar
  19. 19.
    V. Stelmashuk, Phys. Plasmas 21, 010703 (2014) CrossRefGoogle Scholar
  20. 20.
    T. Huiskamp, F.J.C.M. Beckers, E.J.M. van Heesch, A.J.M. Pemen, IEEE Trans. Plasma Sci. 41, 3666 (2013) CrossRefGoogle Scholar
  21. 21.
    E.J.M. van Heesch, J.N.A.M. van Rooij, R.G. Noij, P.C.T. van der Laan, A new current and voltage measuring system; tests in a 150 kV and 400 kV GIS, in Proceedings of the 5th International Symposium on High Voltage Engineering (1987), Vol. 3, p. 73.06 Google Scholar
  22. 22.
    T.H. Martin, M. Williams, M. Kristiansen, eds., J. C. Martin on Pulsed Power (Plenum, New York, 1996) Google Scholar
  23. 23.
    Y.P. Raizer, Gas Discharge Physics (Springer-Verlag, Berlin, 1991) Google Scholar
  24. 24.
    P.J. Bruggeman, F. Iza, R. Brandenburg, Plasma Sources Sci. Technol. 26, 123002 (2017) CrossRefGoogle Scholar
  25. 25.
    R.P. Joshi, J.F. Kolb, S. Xiao, K.H. Schoenbach, Plasma Process. Polym. 6, 763 (2009) CrossRefGoogle Scholar
  26. 26.
    H.M. Jones, E.E. Kunhardt, J. Appl. Phys. 78, 3308 (1995) CrossRefGoogle Scholar
  27. 27.
    A. Lo, A. Cessou, C. Lacour, B. Lecordier, P. Boubert, D.A. Xu, C.O. Laux, P. Vervisch, Plasma Sources Sci. Technol. 26, 045012 (2017) CrossRefGoogle Scholar
  28. 28.
    G. Naidis, Phys. Rev. E 79, 057401 (2009) CrossRefGoogle Scholar
  29. 29.
    H.M. Jones, E.E. Kunardt, J. Phys. D 28, 178 (1995) CrossRefGoogle Scholar
  30. 30.
    M. Šimek, B. Pongrác, V. Babický, M. Člupek, P. Lukeš, Plasma Sources Sci. Technol. 26, 07LT01 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald)GreifswaldGermany
  2. 2.Electrical Energy Systems Group, Department of Electrical EngineeringEindhoven University TechnologyEindhovenThe Netherlands

Personalised recommendations