Advertisement

Influence of pump-beam parameters and crystal optical properties on propagation of thermally affected Bessel–Gaussian beams generated by a solid-state laser

  • Reza FallahEmail author
Regular Article
  • 16 Downloads

Abstract

In diode-pumped solid-state laser system, the generation and propagation of Helmholtz–Gaussian beam families such as Bessel–Gaussian (BG) beam can dramatically suffer from the effects of heat load. In this study, based on the ABCD matrix for BG beams passing through a graded-index medium, expressions for the thermal lens focal length and the output beam are obtained. Furthermore, to evaluate the impact of the pump-beam parameters and crystal optical properties, the intensity distribution of the zeroth- and first-order BG beams against radial distance together with its corresponding transverse intensity pattern on X–Y plane under different pump powers, pump beam waists, absorption coefficients, and thermal conductivities are simulated and compared. The simulation results indicate that for powerful narrow pump beam, the thermal-induced effects are so dramatic that the intensity profiles are altered, as the discernment of BG beams is not easily feasible; however, taking into account the large pump waist, high thermal conductivity and small absorption coefficient can partly cause the laser output similar to non-thermal one despite high pumping power is received. Therefore, the precise selection of laser parameters can considerably reduce the effects of induced heat on the generation and propagation of BG beams. The obtained results are a valuable hint to experimenters for beam identification and beam quality monitoring.

Graphical abstract

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    J.C. Gutierrez-Vega, M.A. Bandres, J. Opt. Soc. Am. A 22, 289 (2005) ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Bandres, J.C. Gutierrez-Vega, S. Chavez-Cerda, Opt. Lett. 29, 44 (2004) ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Gutierrez-Vega, M.A. Bandres, J. Opt. Soc. Am. A 24, 215 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    F. Gori, G. Guattari, C. Padovani, Opt. Commun. 64, 491 (1987) ADSCrossRefGoogle Scholar
  5. 5.
    M. Florjanczyk, R. Trembly, Opt. Commun. 73, 448 (1989) ADSCrossRefGoogle Scholar
  6. 6.
    J. Arlt, T. Hitomi, K. Dholakia, Appl. Phys. B 71, 549 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    Z. Zhao, B. Lu, Opt. Quant. Electron 40, 615 (2008) CrossRefGoogle Scholar
  8. 8.
    V. Garces-Chavez, H. Melville, W. Sibbert, K. Dholakia, Nature 419, 145 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    D. McGloin, V. Garces-Chavez, D. Dholakia, K. Dholakia, Opt. Lett. 28, 657 (2003) ADSCrossRefGoogle Scholar
  10. 10.
    J. Arlt, V. Garces-Chavez, W. Sibbett, K. Dholakia, Opt. Commun. 197, 239 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    Z. Ding, H. Ren, Y. Zhao, J.S. Nelson, Z. Chen, Opt. Lett. 27, 243 (2002) ADSCrossRefGoogle Scholar
  12. 12.
    M. Fortin, M. Piche, E.F. Borra, Opt. Express 12, 5887 (2004) ADSCrossRefGoogle Scholar
  13. 13.
    V. Magni, Opt. Commun. 184, 245 (2000) ADSCrossRefGoogle Scholar
  14. 14.
    G. Gadonas, V. Jarutis, R. Paskauskas, V. Smilgevicius, V. Vaicaitis, Opt. Commun. 196, 309 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    C. Conti, S. Trillo, Opt. Lett. 28, 1251 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    M. Guizar-Sicairos, J.C. Gutierrez-Vega, Opt. Lett. 31, 2912 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    A. Ghafig, Z. Hricha, A. Belafhal, Opt. Commun. 265, 594 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    D.N. Schimpf, J. Schulte, W.P. Putnam, F.X. Kärtner, Opt. Express 20, 26852 (2012) ADSCrossRefGoogle Scholar
  19. 19.
    D.N. Schimpf, W.P. Putnam, D.W. Grogan, S. Ramachandran, F.X. Kärtner, Opt. Express 21, 18469 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    A. Hakola, S.C. Buchter, T. Kajava, H. Elfstrom, J. Simonen, P. Paakkonen, J. Turuen, J. Opt. Commun. 238, 335 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    J. Li, Y. Chen, C. Quanjun, Opt. Laser Technol. 45, 734 (2013) ADSCrossRefGoogle Scholar
  22. 22.
    L.W. Casperson, Appl. Opt. 12, 2434 (1973) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Li, H. Lee, E. Wolf, J. Opt. Soc. Am. A 21, 640 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    M. Schmid, Th. Graf, H.P. Weber, J. Opt. Am. B 17, 1398 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    H. Nadgaran, M. Sabaian, J. Phys. 67, 119 (2006) Google Scholar
  26. 26.
    Y.V. Kartashov, V.A. Vysloukh, L. Torner, Opt. Express 15, 9378 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    T. Graf et al., Opt. Commun. 135, 171 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    Y. Ai-Yun, H. Wei, L. Hui-Qing, Chin. Phys. Lett. 22, 607 (2005) ADSCrossRefGoogle Scholar
  29. 29.
    M. MacDonald et al., IEEE J. Quantum Electron. 334, 366 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    M. Guizar-Sicairos, J.C. Gutierrez-Vega, Opt. Lett. 31, 2912 (2006) ADSCrossRefGoogle Scholar
  31. 31.
    R.I. Hernandez-Aranda, J.C. Gutierrez-Vega, M. Guizar-Sicairos, M.A. Bandres, Opt. Express 14, 8974 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    M. Sabaian, H. Nadgaran, Opt. Commun. 281, 672 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    B.A. Usievich, V.A. Sychugov, F. Pigeon, A. Tishchenko, IEEE J. Quantum Electron. 37, 1210 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    M.P. MacDonald, Th. Graf, J.E. Balmer, H.P. Weber, Opt. Commun. 178, 383 (2000) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, University of BirjandBirjandIran

Personalised recommendations