Advertisement

Electron impact ionization and cationic fragmentation of the pyridazine molecules

  • Marcin Dampc
  • Paweł Możejko
  • Mariusz Zubek
Open Access
Regular Article
  • 53 Downloads
Part of the following topical collections:
  1. Topical Issue: Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces

Abstract

Electron impact mass spectroscopy was used to investigate ionization and cationic fragmentation of the pyridazine (1,2 diazine), C4H4N2, molecules in the gas phase. The mass spectra were measured and the observed mass peaks assigned to the corresponding cations. The appearance energies of most of the cationic fragments were determined and the possible fragmentation processes are discussed. The total cross section for electron impact ionization of pyridazine was calculated using the binary-encounter-Bethe (BEB) model. The calculated cross section was applied to normalize the measured cation yield curves and total and partial cross sections for ionization and cationic fragmentation were obtained over the energy range from the respective ionization thresholds to 140 eV.

Graphical abstract

References

  1. 1.
    I. Linert, M. Dampc, B. Mielewska, M. Zubek, Eur. Phys. J. D 66, 20 (2012) ADSCrossRefGoogle Scholar
  2. 2.
    N. Kishimoto, K. Ohno, J. Phys. Chem. A 104, 6940 (2000) CrossRefGoogle Scholar
  3. 3.
    M.C. Fuss, L. Ellis-Gibbings, D.B. Jones, M.J. Brunger, F. Blanco, A. Munoz, P. Limão-Vieira, G. Garcia, J. Appl. Phys. 117, 214701 (2015) ADSCrossRefGoogle Scholar
  4. 4.
    M.U. Bug, W.Y. Baek, H. Rabus, C. Villagrasa, S. Meylan, A.B. Rosenfeld, Rad. Phys. Chem. 130, 459 (2017) ADSCrossRefGoogle Scholar
  5. 5.
    A.R. Bérces, P.G. Szalay, I. Magdó, G. Fogarasi, G. Pongor, J. Phys. Chem. 97, 1356 (1993) CrossRefGoogle Scholar
  6. 6.
    A. Cartoni, A.R. Casavola, P. Bolognesi, M.C. Castrovilli, D. Cantone, J. Chiarinelli, R. Richter, L. Avaldi, J. Phys. Chem. A 122, 4031 (2018) CrossRefGoogle Scholar
  7. 7.
    W. Akhtar, M. Shaquiquzzaman, M. Akhter, G. Verma, M.F. Khan, M. Alam, Eur. J. Med. Chem. 123, 256 (2016) CrossRefGoogle Scholar
  8. 8.
    R.M. Butnariu, I.I. Mangalagiu, Bioorg. Med. Chem. 17, 2823 (2009) CrossRefGoogle Scholar
  9. 9.
    K. Kusakabe et al. J. Med. Chem. 58, 1760 (2015) CrossRefGoogle Scholar
  10. 10.
    W. Kim, H. Youn, T. Kwon, J. Kang, E. Kim, B. Son, H.J. Yang, Y. Jung, B. Youn, Pharmacol. Res. 70, 90 (2013) CrossRefGoogle Scholar
  11. 11.
    J. Momigny, J. Urbain, H. Wankenne, Bull. Soc. Roy. Sci. Liège 34, 337 (1965) Google Scholar
  12. 12.
    M.H. Benn, T.S. Sorensen, A.M. Hogg, Chem. Commun. 1967, 574 (1967) Google Scholar
  13. 13.
    J.H. Bowie, R.G. Cooks, P.F. Donaghue, J.A. Halleday, H.J. Rodda, Aust. J. Chem. 20, 2677 (1967) CrossRefGoogle Scholar
  14. 14.
    H. Ogura, S. Sugimoto, H. Igeta, T. Tsuchiya, J. Heterocycl. Chem. 8, 391 (1971) CrossRefGoogle Scholar
  15. 15.
    NIST Chemistry WebBook, http://webbook.nist.gov/chemistry Google Scholar
  16. 16.
    W. Wolff, H. Luna, E.C. Montenegro, J. Chem. Phys. 143, 044314 (2015) Google Scholar
  17. 17.
    L. Åsbrink , C. Fridh, B.Ö. Jonsson, E. Lindholm, Int. J. Mass Spectrom. Ion Phys. 8, 229 (1972) ADSCrossRefGoogle Scholar
  18. 18.
    G. Vall-Ilosera, M. Coreno, P. Erman, M.A. Huels, K. Jakubowska, A. Kivimäki, E. Rachlew, M. Stankiewicz, Int. J. Mass Spectrom. 275, 55 (2008) CrossRefGoogle Scholar
  19. 19.
    L. Ellis-Gibbings, A.D. Bass, P. Cloutier, G. Garcia, L. Sanche, Phys. Chem. Chem. Phys. 19, 13038 (2017) CrossRefGoogle Scholar
  20. 20.
    M. Dampc, T. Juchniewicz, W. Molicki, M. Zubek, in Abstracts of 2nd NANO-IBCT Conference, Gdańsk, Poland (2013), p. 74 Google Scholar
  21. 21.
    R. Rejoub, B.G. Lindsay, R.F. Stebbings, Phys. Rev. A 65, 042713 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    T.D. Märk, J. Chem. Phys. 63, 3731 (1975) CrossRefGoogle Scholar
  23. 23.
    S. Matt et al. Chem. Phys. Lett. 264, 149 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    M. Dampc, I. Linert, M. Zubek, J. Phys. B 48, 165202 (2015) ADSCrossRefGoogle Scholar
  25. 25.
    Y.-K. Kim, M.E. Rudd, Phys. Rev. A 50, 3954 (1994) ADSCrossRefGoogle Scholar
  26. 26.
    W. Hwang, Y.-K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996) ADSCrossRefGoogle Scholar
  27. 27.
    Y.-K. Kim, W. Hwang, N.M. Weinberger, M.A. Ali, M.E. Rudd, J. Chem. Phys. 106, 1026 (1997) ADSCrossRefGoogle Scholar
  28. 28.
    G.P. Karwasz, P. Możejko, M.-Y. Song, Int. J. Mass Spectrom. 365–366, 232 (2014) CrossRefGoogle Scholar
  29. 29.
    H. Tanaka, M.J. Brunger, L. Campbell, H. Kato, M. Hoshino, A.R.P. Rau, Rev. Mod. Phys. 88, 025004 (2016) ADSCrossRefGoogle Scholar
  30. 30.
    M.J. Frisch et al. Gaussian 09, Revision D.01 (Gaussian Inc., Wallingford, CT, 2013) Google Scholar
  31. 31.
    L.S. Cederbaum, J. Phys. B 8, 290 (1975) ADSCrossRefGoogle Scholar
  32. 32.
    W. von Niessen, J. Schirmer, L.S. Cederbaum, Comp. Phys. Rep. 1, 57 (1984) CrossRefGoogle Scholar
  33. 33.
    J.V. Ortiz, J. Chem. Phys. 89, 6348 (1988) MathSciNetGoogle Scholar
  34. 34.
    V.G. Zakrzewski, W. von Niessen, J. Comp. Chem. 14, 13 (1994) CrossRefGoogle Scholar
  35. 35.
    O. Mó, J.L.G. de Paz, M. Yáñez, J. Mol. Struct. (Theochem) 150, 135 (1987) CrossRefGoogle Scholar
  36. 36.
    K.-W. Choi, D.-S. Ahn, J.-H. Lee, S.K. Kim, J. Phys. Chem. A 110, 2634 (2006) CrossRefGoogle Scholar
  37. 37.
    A. Almenningen, G. Bjornsen, T. Ottersen, R. Seip, T.G. Strand, Acta Chem. Scand. A 31, 63 (1977) CrossRefGoogle Scholar
  38. 38.
    S. Cradock, C. Purves, D.W.H. Rankin, J. Mol. Struct. 220, 193 (1990) ADSCrossRefGoogle Scholar
  39. 39.
    M.H. Palmer, I.C. Walker, Chem. Phys. 157, 187 (1991) CrossRefGoogle Scholar
  40. 40.
    J.V. Ortiz, V.G. Zakrzewski, J. Chem. Phys. 105, 2762 (1996) ADSCrossRefGoogle Scholar
  41. 41.
    D.M.P. Holland, D.A. Shaw, S. Coriani, M. Stener, P. Decleva, J. Phys. B 46, 175103 (2013) ADSCrossRefGoogle Scholar
  42. 42.
    R. Gleiter, E. Haibronner, V. Hornung, Helv. Chim. Acta 55, 255 (1972) CrossRefGoogle Scholar
  43. 43.
    T. Fiegele, G. Hanel, I. Torres, M. Lezius, T.D. Märk, J. Phys. B 33, 4263 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    A.J. Yencha, M.A. El-Sayed, J. Chem. Phys. 48, 3469 (1968) ADSCrossRefGoogle Scholar
  45. 45.
    R. Buff, J. Dannacher, Int. J. Mass Spectrom. Ion Process. 62,l 1984 CrossRefGoogle Scholar
  46. 46.
    P. Plessis, P. Marmet, Int. J. Mass Spectrom. Ion Process. 70, 23 (1986) ADSCrossRefGoogle Scholar
  47. 47.
    C. Tian, C.R. Vidal, J. Phys. B 31, 895 (1998) ADSCrossRefGoogle Scholar
  48. 48.
    Z. Li, M.M. Dawley, I. Carmichael, S. Ptasińska, Int. J. Mass Spectrom. 410, 36 (2016) CrossRefGoogle Scholar
  49. 49.
    W. Wolff, H. Luna, L. Sigaud, A.C. Tavares, E.C. Montenegro, J. Chem. Phys. 140, 064309 (2014) ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Physics of Electronic PhenomenaFaculty of Applied Physics and Mathematics, Gdańsk University of Technology80-233 GdańskPoland
  2. 2.Department of AtomicMolecular and Optical Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology80-233 GdańskPoland
  3. 3.Department of Control and Power EngineeringFaculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology80-233 GdańskPoland

Personalised recommendations