Advertisement

Retaining hypothetical photon mass in atomic spectroscopy models

  • Joël RosatoEmail author
Regular Article
  • 21 Downloads

Abstract

We revisit the formalism involved in atomic spectroscopy modeling under the assumption that the photon has a finite mass. Starting from the Proca Lagrangian, we build a Hamiltonian suitable for the calculation of line shapes and intensities. Two consequences of finite photon mass are: (i) a dispersion of electromagnetic waves propagating in free space; (ii) the occurrence of a longitudinal polarization state. We illustrate these effects by addressing the spontaneous emission of a massive photon by an excited atom. The Einstein A coefficient and the power spectrum are calculated as an example. If the photon has a finite mass, deviations to standard formulas are showed to occur at energies comparable to the mass energy. A discussion based on the current upper bound estimates for the photon mass is done.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 82, 939 (2010) ADSCrossRefGoogle Scholar
  2. 2.
    L.-C. Tu, J. Luo, G.T. Gillies, Rep. Prog. Phys. 68, 77 (2005) ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Goldhaber, M.M. Nieto, Rev. Mod. Phys. 43, 277 (1971) ADSCrossRefGoogle Scholar
  4. 4.
    M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) ADSCrossRefGoogle Scholar
  5. 5.
    D.D. Ryutov, Plasma Phys. Control. Fusion 49, B429 (2007) ADSCrossRefGoogle Scholar
  6. 6.
    L. Bonetti et al., Phys. Lett. B 768, 326 (2017) ADSCrossRefGoogle Scholar
  7. 7.
    L. Bonetti et al., Phys. Lett. B 757, 548 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    A. Retinò, A.D.A.M. Spallicci, A. Vaivads, Astropart. Phys. 82, 49 (2016) ADSCrossRefGoogle Scholar
  9. 9.
    P. Egorov et al., Mon. Not. R. Astron. Soc. 437, L90 (2014) ADSCrossRefGoogle Scholar
  10. 10.
    A. Accioly, J. Helayël-Neto, E. Scatena, Phys. Rev. D 82, 065026 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    W. Greiner, J. Reinhardt, Field Quantization (Springer, Berlin, 1996) Google Scholar
  12. 12.
    J.D. Jackson, Classical Electrodynamics (Wiley, Hoboken, 1999) Google Scholar
  13. 13.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (Wiley, New York, 1989) Google Scholar
  14. 14.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications (Wiley, New York, 1992) Google Scholar
  15. 15.
    G. Nienhuis, Physica 66, 245 (1973) ADSCrossRefGoogle Scholar
  16. 16.
    M. Baranger, Spectral line broadening in plasmas, in Atomic and Molecular Processes, edited by D.R. Bates (Academic Press, New York, 1962), p. 493 Google Scholar
  17. 17.
    H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974) Google Scholar
  18. 18.
    S. Alexiou, High Energy Density Phys. 5, 225 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    E. Stambulchik, High Energy Density Phys. 9, 528 (2013) ADSCrossRefGoogle Scholar
  20. 20.
    M.A. Gigosos, J. Phys. D: Appl. Phys. 47, 343001 (2014) ADSCrossRefGoogle Scholar
  21. 21.
    J. Rosato, High Energy Density Phys. 22, 60 (2017) ADSCrossRefGoogle Scholar
  22. 22.
    J. Rosato et al., Phys. Rev. E 79, 046408 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, in Quantum Mechanics (Wiley, New York, 1991), Vol. 1 Google Scholar
  24. 24.
    H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957) Google Scholar
  25. 25.
    J. Alexander, S. Gulyaev, Astrophys. J. 828, 40 (2016) ADSCrossRefGoogle Scholar
  26. 26.
    G. Peach, J. Astrophys. Astron. 36, 555 (2015) ADSCrossRefGoogle Scholar
  27. 27.
    S.V. Stepkin et al., Mon. Not. R. Astron. Soc. 374, 852 (2007) ADSCrossRefGoogle Scholar
  28. 28.
    E. Churchwell, P.G. Mezger, Astrophys. Lett. 5, 227 (1970) ADSGoogle Scholar
  29. 29.
    J.K.G. Watson, J. Phys. B: At. Mol. Opt. Phys. 39, L291 (2006) ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Hey, J. Phys. B: At. Mol. Opt. Phys. 47, 165701 (2014) ADSCrossRefGoogle Scholar
  31. 31.
    K. Ferrière, Rev. Mod. Phys. 73, 1031 (2001) ADSCrossRefGoogle Scholar
  32. 32.
    F. Nicastro, S. Mathur, M. Elvis, Science 319, 55 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Inglis, E. Teller, Astrophys. J. 90, 439 (1939) ADSCrossRefGoogle Scholar
  34. 34.
    G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company Inc., Princeton, 1950) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aix-Marseille Université, CNRS, Laboratoire PIIM, UMR 7345, Centre de Saint-JérômeMarseille Cedex 20France

Personalised recommendations