Advertisement

Collapse and revival oscillation in Double Jaynes–Cummings model

  • Surajit SenEmail author
  • Tushar Kanti Dey
  • Mihir Ranjan Nath
Regular Article
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We develop a systematic method of solving two noninteracting Jaynes–Cummings models by using the dressed state formalism in Hilbert space HAB(2⊗2). It is shown that such model, called Double Jaynes–Cummings model (D-JCM), can be exactly solved if we take the initial bare state as the linear superposition of two Bell states. The collapse and revival oscillation, which is the standard trait of typical Jaynes–Cummings model, can be recovered if we make measurement at each local sites. Some consequence of the entanglement-induced dressing is discussed.

Graphical abstract

References

  1. 1.
    E. Schrödinger, Math. Proc. Camb. Philos. Soc. 31, 555 (1935) ADSCrossRefGoogle Scholar
  2. 2.
    E. Schrödinger, Math. Proc. Camb. Philos. Soc. 32, 446 (1936) ADSCrossRefGoogle Scholar
  3. 3.
    C.H. Bennett, G. Brassard, Proc. IEEE Int. Conf. Comput. 175, 8 (1984) Google Scholar
  4. 4.
    R.L. Rivest, A. Shamir, L. Adleman, Commun. ACM 21, 120 (1978) CrossRefGoogle Scholar
  5. 5.
    A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991) ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    M.A. Nielsen, I.L. Chuang, Quantum Information and Quantum Computation (Cambridge University Press, Cambridge, 2000) Google Scholar
  7. 7.
    A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982) ADSCrossRefGoogle Scholar
  8. 8.
    J. Bell, Physics 1, 195 (1964) CrossRefGoogle Scholar
  9. 9.
    J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969) ADSCrossRefGoogle Scholar
  10. 10.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935) ADSCrossRefGoogle Scholar
  11. 11.
    B. Hensen, et al., Phys. Rev. Lett. 526, 682 (2015) Google Scholar
  12. 12.
    L.K. Shalm, et al., Phys. Rev. Lett. 115, 250402 (2015) ADSCrossRefGoogle Scholar
  13. 13.
    S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    W.K. Wootters, Int. J. Quant. Inf. 4, 219 (2006) CrossRefGoogle Scholar
  16. 16.
    P. Rungta, et al., Phys. Rev. A 64, 042315 (2001) ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    M. Lewenstein, B. Kraus, P. Horodecki, J.I. Cirac, Phys. Rev. A 63, 044304 (2001) ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    O. Göhne, G. Toth, Phys. Rep. 474, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    M. Yönac, T. Yu, J. Eberly, J. Phys. B: At. Mol. Opt. Phys. 39, S621 (2006) CrossRefGoogle Scholar
  21. 21.
    M. Yönac, T. Yu, J.H. Eberly, J. Phys. B: At. Mol. Opt. Phys. 40, S45 (2007) ADSCrossRefGoogle Scholar
  22. 22.
    T. Yu, J.H. Eberly, Science 30, 598 (2009) ADSCrossRefGoogle Scholar
  23. 23.
    M. Yönac, J.H. Eberly, Opt. Lett. 33, 270 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    V.S. Vladimir, S. Malinovsky, R.S. Ignacio, Phys. Rev. Lett. 96, 050502:1 (2006) Google Scholar
  25. 25.
    P. Saha, A. Majumder, S. Singh, N. Nayak, Int. J. Quant. Inf. 8, 1397 (2010) CrossRefGoogle Scholar
  26. 26.
    C.E.A. Jarvis, et al., J. Opt. Soc. Am. B 27, A164 (2010) CrossRefGoogle Scholar
  27. 27.
    X. Jin-Shi, et al., Phys. Rev. Lett. 104, 100502:1 (2010) Google Scholar
  28. 28.
    I. Bahari, T.P. Spiller, S. Dooley, A. Hayes, F. McCrossan, Int. J. Quant. Inf. 16, 1850017 (2018) CrossRefGoogle Scholar
  29. 29.
    X.Q. Yan, B.Y. Zhang, Ann. Phys. 349, 350 (2014) ADSCrossRefGoogle Scholar
  30. 30.
    I. Sainz, G. Björk, Phys. Rev. A 76, 042313 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    F. Han, Chin. Sci. Bull. 55, 1758 (2010) CrossRefGoogle Scholar
  32. 32.
    A. Joshi, M. Xiao, Phys. Lett. A 317, 370 (2003) ADSCrossRefGoogle Scholar
  33. 33.
    E. Paspalakis, P.L. Knight, J. Phys. B: At. Mol. Opt. Phys. 4, S372 (1999) Google Scholar
  34. 34.
    E. Paspalakis, N.J. Kylstra, P.L. Knight, Phys. Rev. A 65, 053808 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    B.S. Ham, P.R. Hemmer, Phys. Rev. Lett. 84, 4080 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    S.E. Harris, Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998) ADSCrossRefGoogle Scholar
  37. 37.
    M.R. Nath, T.K. Dey, S. Sen, G. Gangopadhyay, Pramana: J. Phys. 77, 141 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    S. Sen, M.R. Nath, T.K. Dey, G. Gangopadhyay, Ann. Phys. 327, 224 (2012) ADSCrossRefGoogle Scholar
  39. 39.
    S. Sen, H. Ahmed, J. Math. Phys. 55, 122105 (2014) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  41. 41.
    S.M. Barnett, P.M. Radmore, Methods in Theoretical Quantum Optics (Clarendon Press, Oxford, 1997) Google Scholar
  42. 42.
    S.K. Bose, E.A. Pascos, Nucl. Phys. B169, 384 (1980) ADSCrossRefGoogle Scholar
  43. 43.
    S. Sen, T.K. Dey, M.R. Nath, G. Gangopadhyay, J. Mod. Opt. 62, 166 (2015) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department, Guru Charan CollegeSilcharIndia
  2. 2.Centre of Advanced Studies and Innovation LabTarapur, SilcharIndia

Personalised recommendations