Advertisement

Improving the lower bound to the secret-key capacity of the thermal amplifier channel

  • Gan Wang
  • Carlo Ottaviani
  • Hong Guo
  • Stefano PirandolaEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Quantum Correlations

Abstract

We consider the noisy thermal amplifier channel, where signal modes are amplified together with environmental thermal modes. We focus on the secret-key capacity of this channel, which is the maximum amount of secret bits that two remote parties can generate by means of the most general adaptive protocol, assisted by unlimited and two-way classical communication. For this channel only upper and lower bounds are known, and in this work we improve the lower bound. We consider a protocol based on squeezed states and homodyne detections, in both direct and reverse reconciliation. In particular, we assume that trusted thermal noise is mixed on beam splitters controlled by the parties in a way to assist their homodyne detections. The new improved lower bounds to the secret-key capacity are obtained by optimizing the key rates over the variance of the trusted noise injected, and the transmissivity of the parties’ beam splitters. Our results confirm that there is a separation between the coherent information of the thermal amplifier channel and its secret key capacity.

Graphical abstract

References

  1. 1.
    J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018) Google Scholar
  2. 2.
    M. Hayashi, Quantum Information Theory: Mathematical Foundation (Springer-Verlag, Berlin, Heidelberg, 2017) Google Scholar
  3. 3.
    W.K. Wootters, W.H Zurek, Nature 299, 802 (1982) CrossRefGoogle Scholar
  4. 4.
    V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009) CrossRefGoogle Scholar
  5. 5.
    S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005) CrossRefGoogle Scholar
  6. 6.
    C. Weedbrook et al., Rev. Mod. Phys. 84, 621 (2012) CrossRefGoogle Scholar
  7. 7.
    T. Serikawa, A. Furusawa, https://doi.org/arXiv:1803.06462 (2018)
  8. 8.
    F. Grosshans et al., Nature 421, 238 (2003) CrossRefGoogle Scholar
  9. 9.
    C. Weedbrook et al., Phys. Rev. Lett. 93, 170504 (2004) CrossRefGoogle Scholar
  10. 10.
    A.M. Lance et al., Phys. Rev. Lett. 95, 180503 (2005) CrossRefGoogle Scholar
  11. 11.
    C. Silberhorn, T.C. Ralph, N. Lütkenhaus, G. Leuchs, Phys. Rev. Lett. 89, 167901 (2002) CrossRefGoogle Scholar
  12. 12.
    R. García-Patrón, N.J. Cerf, Phys. Rev. Lett. 102, 130501 (2009) CrossRefGoogle Scholar
  13. 13.
    R. Filip, Phys. Rev. A 77, 022310 (2008) CrossRefGoogle Scholar
  14. 14.
    V.C. Usenko, R. Filip, Phys. Rev. A 81, 022318 (2010) CrossRefGoogle Scholar
  15. 15.
    C. Weedbrook, S. Pirandola, T.C. Ralph, Phys. Rev. Lett. 105, 110501 (2010) CrossRefGoogle Scholar
  16. 16.
    C. Weedbrook, S. Pirandola, S. Lloyd, T.C. Ralph, Phys. Rev. A 86, 022318 (2012) CrossRefGoogle Scholar
  17. 17.
    C.S. Jacobsen, T. Gehring, U.L. Andersen, Entropy 17, 4654 (2015) CrossRefGoogle Scholar
  18. 18.
    V.C. Usenko, R. Filip, Entropy 18, 20 (2016) CrossRefGoogle Scholar
  19. 19.
    V.C. Usenko, F. Grosshans, Phys. Rev. A 92, 062337 (2015) MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Leverrier, F. Grosshans, P. Grangier, Phys. Rev. A 81, 062343 (2010) CrossRefGoogle Scholar
  21. 21.
    A. Leverrier, Phys. Rev. Lett. 114, 070501 (2015) CrossRefGoogle Scholar
  22. 22.
    F. Furrer et al., Phys. Rev. Lett. 109, 100502 (2012) CrossRefGoogle Scholar
  23. 23.
    F. Furrer et al., Phys. Rev. Lett. 112, 019902(E) (2014) CrossRefGoogle Scholar
  24. 24.
    S. Pirandola, S. Mancini, S. Lloyd, S.L. Braunstein, Nat. Phys. 4, 726 (2008) CrossRefGoogle Scholar
  25. 25.
    C. Ottaviani, S. Mancini, S. Pirandola, Phys. Rev. A 92, 062323 (2015) CrossRefGoogle Scholar
  26. 26.
    C. Ottaviani, S. Pirandola, Sci. Rep. 6, 22225 (2016) CrossRefGoogle Scholar
  27. 27.
    C. Weedbrook, C. Ottaviani, S. Pirandola, Phys. Rev. A 89, 012309 (2014) CrossRefGoogle Scholar
  28. 28.
    J.H. Shapiro, Phys. Rev. A 80, 022320 (2009) CrossRefGoogle Scholar
  29. 29.
    Q. Zhuang, Z. Zhang, J. Dove, F.N.C. Wong, J.H. Shapiro, Phys. Rev. A 94, 012322 (2016) CrossRefGoogle Scholar
  30. 30.
    Q. Zhuang, Z. Zhang, N. Lütkenhaus, J.H. Shapiro, Phys. Rev. A 98, 032332 (2018) CrossRefGoogle Scholar
  31. 31.
    S. Ghorai, E. Diamanti, A. Leverrier, Composable security of two-way continuous-variable quantum key distribution, https://doi.org/arXiv:1806.11356 (2018)
  32. 32.
    S. Pirandola et al., Nat. Photon. 9, 397 (2015) CrossRefGoogle Scholar
  33. 33.
    C. Ottaviani, G. Spedalieri, S.L. Braunstein, S. Pirandola, Phys. Rev. A 91, 022320 (2015) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Z. Li et al., Phys. Rev. A 89, 052301 (2014) CrossRefGoogle Scholar
  35. 35.
    Y. Zhang et al., Phys. Rev. A 90, 052325 (2014) CrossRefGoogle Scholar
  36. 36.
    P. Papanastasiou, C. Ottaviani, S. Pirandola, Phys. Rev. A 96, 042332 (2017) CrossRefGoogle Scholar
  37. 37.
    C. Lupo, C. Ottaviani, P. Papanastasiou, S. Pirandola, Phys. Rev. A 97, 052327 (2018) CrossRefGoogle Scholar
  38. 38.
    C. Lupo, C. Ottaviani, P. Papanastasiou, S. Pirandola, Phys. Rev. Lett. 120, 220505 (2018) CrossRefGoogle Scholar
  39. 39.
    S. Pirandola, R. Laurenza, C. Ottaviani, L. Banchi, Nat. Commun. 8, 15043 (2017) CrossRefGoogle Scholar
  40. 40.
    T.P.W. Cope, L. Hetzel, L. Banchi, S. Pirandola, Phys. Rev. A 96, 022323 (2017) CrossRefGoogle Scholar
  41. 41.
    S. Pirandola, R. Laurenza, L. Banchi, Ann. Phys. 400, 289 (2019) CrossRefGoogle Scholar
  42. 42.
    T.P.W. Cope, K. Goodenough, S. Pirandola, J. Phys. A: Math. Theor. 51, 494001 (2018) CrossRefGoogle Scholar
  43. 43.
    S. Pirandola, S.L. Braunstein, R. Laurenza, C. Ottaviani, T.P.W. Cope, G. Spedalieri, L. Banchi, Quantum Sci. Technol. 3, 035009 (2018) CrossRefGoogle Scholar
  44. 44.
    S. Pirandola, R. Laurenza, S.L. Braunstein, Eur. Phys. J. D 72, 162 (2018) CrossRefGoogle Scholar
  45. 45.
    C. Ottaviani et al., Quantum Inf. Sci. Technol. II 9996, 999609 (2016) CrossRefGoogle Scholar
  46. 46.
    B. Schumacher, M.A. Nielsen, Phys. Rev. A 54, 2629 (1996) MathSciNetCrossRefGoogle Scholar
  47. 47.
    S. Lloyd, Phys. Rev. A 55, 1613 (1997) MathSciNetCrossRefGoogle Scholar
  48. 48.
    K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, Phys. Rev. Lett. 94, 160502 (2005) MathSciNetCrossRefGoogle Scholar
  49. 49.
    A.S. Holevo, R.F. Werner, Phys. Rev. A 63, 032312 (2001) CrossRefGoogle Scholar
  50. 50.
    S. Pirandola, R. García-Patrón, S.L. Braunstein, S. Lloyd, Phys. Rev. Lett. 102, 050503 (2009) MathSciNetCrossRefGoogle Scholar
  51. 51.
    V. Vedral, Rev. Mod. Phys. 74, 197 (2002) CrossRefGoogle Scholar
  52. 52.
    V. Vedral, M.B. Plenio, M.A. Rippin, P.L. Knight, Phys. Rev. Lett. 78, 2275 (1997) MathSciNetCrossRefGoogle Scholar
  53. 53.
    V. Vedral, M.B. Plenio, Phys. Rev. A 57, 1619 (1998) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Gan Wang
    • 1
    • 2
  • Carlo Ottaviani
    • 2
  • Hong Guo
    • 1
  • Stefano Pirandola
    • 2
    • 3
    Email author
  1. 1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, and Center for Quantum Information Technology, Peking UniversityBeijingP.R. China
  2. 2.Computer Science, University of YorkYorkUK
  3. 3.Research Lab of Electronics, MITCambridgeUSA

Personalised recommendations