Advertisement

Quantum plasmonics with multi-emitters: application to stimulated Raman adiabatic passage

  • Alessia Castellini
  • Hans Rudolf Jauslin
  • Benjamin Rousseaux
  • David Dzsotjan
  • Gérard Colas des Francs
  • Antonino Messina
  • Stéphane GuérinEmail author
Regular Article

Abstract

We construct a mode-selective effective model describing the interaction of the localised surface plasmon polaritons (LSPs) supported by a spherical metal nanoparticle (MNP) with N quantum emitters (QEs) in an arbitrary geometric arrangement. Simplifying previously presented procedures, we develop a formulation in which the field response in the presence of the MNP can be decomposed into orthogonal modes, expanding the Green tensor of the system in the spherical vector harmonics basis and using the generalized global Löwdin orthogonalization algorithm. We investigate the possibility of using the LSPs as mediators of an efficient control of population transfer between two QEs. We show that a Stimulated Raman Adiabatic Passage (STIRAP) configuration allows such a transfer via a decoherence-free dark state for a specific range of angular distances between the QEs, when they are located very close to the MNP. The transfer is otherwise blocked. We explain this blockade by the destructive superposition of all the plasmonic modes.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    E. Le Ru, P. Etchegoin, Principles of surface enhanced Raman spectroscopy and related plasmonic effects (Elsevier, 2009) Google Scholar
  2. 2.
    S.A. Maier, Plasmonics: fundamentals and applications (Springer, 2009) Google Scholar
  3. 3.
    A.V. Zayats, I.I. Smolyaninov, J. Opt. A 5, S16 (2003) CrossRefGoogle Scholar
  4. 4.
    E. Ozbay, Science 311, 189 (2006) CrossRefGoogle Scholar
  5. 5.
    P. Ginzburg, Rev. Phys. 1, 120 (2016) CrossRefGoogle Scholar
  6. 6.
    G. Colas des Francs, S. Derom, R. Vincent, A. Bouhelier, A. Dereux, Int. J. Optics 2012, 175162 (2012) CrossRefGoogle Scholar
  7. 7.
    L. Knöll, S. Scheel, D.-G. Welsch, QED in dispersing and absorbing dielectric media, in Coherence and Statistics of Photons and Atoms (Wiley, New York, 2001), p. 1 Google Scholar
  8. 8.
    D. Dzsotjan, A.S. Sørensen, M. Fleischhauer, Phys. Rev. B 82, 075427 (2010) CrossRefGoogle Scholar
  9. 9.
    C. Van Vlack, P.T. Kristensen, S. Hughes, Phys. Rev. B 85, 075303 2012 CrossRefGoogle Scholar
  10. 10.
    J. Hakami, L. Wang, M.S. Zubairy, Phys. Rev. A 89, 053835 (2014) CrossRefGoogle Scholar
  11. 11.
    L.G. Suttorp, A.J. van Wonderen, Europhys. Lett. 70, 766 (2004) CrossRefGoogle Scholar
  12. 12.
    B. Huttner, S.M. Barnett, Phys. Rev. A 46, 4306 (1992) CrossRefGoogle Scholar
  13. 13.
    T.G. Philbin, New J. Phys. 12, 123008 (2010) CrossRefGoogle Scholar
  14. 14.
    D. Dzsotjan, B. Rousseaux, H.R. Jauslin, G.C. des Francs, C. Couteau, S. Guérin, Phys. Rev. A 94, 023818 (2016) CrossRefGoogle Scholar
  15. 15.
    A. Delga, J. Feist, J. Bravo-Abad, F.J. Garcia-Vidal, Phys. Rev. Lett. 112, 253601 (2014) CrossRefGoogle Scholar
  16. 16.
    A. Delga, J. Feist, J. Bravo-Abad, F.J. Garcia-Vidal, J. Opt. 16, 114018 (2014) CrossRefGoogle Scholar
  17. 17.
    D. Chang, A. Sorensen, E. Demler, M. Lukin, Nat. Phys. 3, 807 (2007) CrossRefGoogle Scholar
  18. 18.
    C.E. Susa, J.H. Reina, R. Hildner, Phys. Lett. A 378, 2371 (2014) CrossRefGoogle Scholar
  19. 19.
    B. Rousseaux, D. Dzsotjan, G. Colas des Francs, H.R. Jauslin, C. Couteau, S. Guérin, Phys. Rev. B 93, 045422 (2016) [Erratum: Phys. Rev. B 94, 199902 2016] CrossRefGoogle Scholar
  20. 20.
    K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015) CrossRefGoogle Scholar
  21. 21.
    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017) CrossRefGoogle Scholar
  22. 22.
    S.P. Premaratne, F.C. Wellstood, B.S. Palmer, Nat. Commun. 8, 14148 (2017) CrossRefGoogle Scholar
  23. 23.
    K.S. Kumar, A. Vepsäläinen, S. Danilin, G.S. Paraoanu, Nat. Commun. 7, 10628 (2016) CrossRefGoogle Scholar
  24. 24.
    R.N. Annavarapu, AJCAM 3, 33 (2013) Google Scholar
  25. 25.
    H. Varguet, B. Rousseaux, D. Dzsotjan, H.R. Jauslin, S. Guérin, G. Colas des Francs, Opt. Lett. 41, 4480 (2016) CrossRefGoogle Scholar
  26. 26.
    P.-O. Löwdin. J. Chem. Phys. 18, 365 (1950) CrossRefGoogle Scholar
  27. 27.
    P.-O. Löwdin. Adv. Phys. 5, 1 (1956) CrossRefGoogle Scholar
  28. 28.
    P.-O. Löwdin, Linear Algebra for Quantum Theory (John Wiley, 1998) Google Scholar
  29. 29.
    H.T. Dung, L. Knöll, D.-G. Welsch, Phys. Rev. A 57, 3931 (1998) CrossRefGoogle Scholar
  30. 30.
    R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnico, R. Pierrat, Y. De Wilde, Surf. Sci. Rep. 70, 1 (2015) CrossRefGoogle Scholar
  31. 31.
    N.V. Vitanov, B.W. Shore, K. Bergmann, Eur. Phys. J. D 4, 15 (1998) CrossRefGoogle Scholar
  32. 32.
    N.V. Vitanov, S. Stenholm, Phys. Rev. A 60, 3820 (1999) CrossRefGoogle Scholar
  33. 33.
    J.H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford University Press, 1965) Google Scholar
  34. 34.
    L.N. Trefethen, D. Bau, Numerical Linear Algebra (SIAM, Philadelphia 1997) Google Scholar
  35. 35.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, 2007) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alessia Castellini
    • 1
    • 2
  • Hans Rudolf Jauslin
    • 3
  • Benjamin Rousseaux
    • 4
    • 5
  • David Dzsotjan
    • 6
  • Gérard Colas des Francs
    • 3
  • Antonino Messina
    • 2
    • 7
  • Stéphane Guérin
    • 3
    Email author
  1. 1.Dipartimento di Fisica e Chimica dell’Università di PalermoPalermoItaly
  2. 2.INFN Sezione di CataniaCataniaItaly
  3. 3.Laboratoire Interdisciplinaire Carnot de Bourgogne, CNRS UMR 6303, Université Bourgogne Franche-ComtéDijonFrance
  4. 4.Department of PhysicsChalmers University of TechnologyGöteborgSweden
  5. 5.Department of Microtechnology and Nanoscience – MC2Chalmers University of TechnologyGöteborgSweden
  6. 6.Wigner Research Center for Physics, Hungarian Academy of SciencesBudapestHungary
  7. 7.Dipartimento di Matematica e Informatica dell’Università di PalermoPalermoItaly

Personalised recommendations