Advertisement

Efficient formation of stable ultracold Cs2 molecules in the ground electronic state via two-color photoassociation

  • Bing Kuan Lyu
  • Jing Lun Li
  • Meng Wang
  • Gao Ren Wang
  • Shu Lin CongEmail author
Regular Article
  • 50 Downloads

Abstract

The efficient formation of ultracold Cs2 molecules in a low vibrational state of the ground electronic state from ultracold cesium atoms via a two-color pump–dump photoassociation is theoretically investigated. An excited state wave packet is formed by a negative chirped pump pulse, and then is de-excited to the target vibrational state of the ground electronic state by a long dump pulse. The population transfer process from the excited electronic state to the target vibrational state is closely related to the movement of the excited state wave packet. We find that there exists a dump window during the movement of the excited state wave packet. The population in the excited electronic state can be efficiently de-excited to the target vibrational state of the ground electronic state by the dump pulse turned on in this dump window, and the efficiency of de-excitation reaches 67.11%. The population of the target vibrational state can be further transferred to the lowest vibrational state of the ground electronic state, and the transfer efficiency can reach 99.96%.

Graphical abstract

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009) CrossRefGoogle Scholar
  2. 2.
    D.S. Jin, J. Ye, Chem. Rev. 112, 4801 (2012) CrossRefGoogle Scholar
  3. 3.
    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003) CrossRefGoogle Scholar
  4. 4.
    E.R. Hudson, H.J. Lewandowski, B.C. Sawyer, J. Ye, Phys. Rev. Lett. 96, 143004 (2006) CrossRefGoogle Scholar
  5. 5.
    T. Zelevinsky, S. Kotochigova, J. Ye, Phys. Rev. Lett. 100, 043201 (2008) CrossRefGoogle Scholar
  6. 6.
    J.J. Hudson, D.M. Kara, I.J. Smallman, B.E. Sauer, M.R. Tarbutt, E.A. Hinds, Nature 473, 493 (2011) CrossRefGoogle Scholar
  7. 7.
    S. Truppe, R.J. Hendricks, S.K. Tokunaga, H.J. Lewandowski, M.G. Kozlov, C. Henkel, E.A. Hinds, M.R. Tarbutt, Nat. Commun. 4, 2600 (2003) CrossRefGoogle Scholar
  8. 8.
    M.T. Bell, T.P. Softley, Mol. Phys. 107, 99 (2009) CrossRefGoogle Scholar
  9. 9.
    N. Balakrishnan, J. Chem. Phys. 145, 150901 (2016) CrossRefGoogle Scholar
  10. 10.
    R. de Carvalho, J.M. Doyle, B. Friedrich, T. Guillet, J. Kim, D. Patterson, J.D. Weinstein, Eur. Phys. J. D 7, 289 (1999) CrossRefGoogle Scholar
  11. 11.
    N.R. Hutzler, H. Lu, J.M. Doyle, Chem. Rev. 112, 4803 (2012) CrossRefGoogle Scholar
  12. 12.
    H.L. Bethlem, G. Berden, G. Meijer, Phys. Rev. Lett. 83, 1558 (1999) CrossRefGoogle Scholar
  13. 13.
    S.Y.T. van de Meerakker, H.L. Bethlem, N. Vanhaecke, G. Meijer, Chem. Rev. 112, 4828 (2012) CrossRefGoogle Scholar
  14. 14.
    D.J. McCabe, D.G. England, H.E.L. Martay, M.E. Friedman, J. Petrovic, E. Dimova, C. Béatrice, I.A. Walmsley, Phys. Rev. A 80, 033404 (2009) CrossRefGoogle Scholar
  15. 15.
    J. Ulmanis, J. Deiglmayr, M. Repp, R. Wester, M. Weidemüller, Chem. Rev. 112, 4890 (2012) CrossRefGoogle Scholar
  16. 16.
    Y. Huang, T. Xie, G.R. Wang, W. Zhang, S.L. Cong, Laser Phys. 24, 046001 (2014) CrossRefGoogle Scholar
  17. 17.
    E.F. de Lima, Phys. Rev. A 95, 013411 (2017) CrossRefGoogle Scholar
  18. 18.
    Z.H. Li, T. Gong, Z.H. Ji, Y.T. Zhao, L.T. Xiao, S.T. Jia, Phys. Chem. Chem. Phys. 20, 4893 (2018) CrossRefGoogle Scholar
  19. 19.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010) CrossRefGoogle Scholar
  20. 20.
    S. Taie, S. Watanabe, T. Ichinose, Y. Takahashi, Phys. Rev. Lett. 116, 043202 (2016) CrossRefGoogle Scholar
  21. 21.
    M. Borkowski, R.M. Rodriguez, M.B. Kosicki, R. Ciurylo, P.S. Zuchowski, Phys. Rev. A 96, 063411 (2017) CrossRefGoogle Scholar
  22. 22.
    A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Phys. Rev. Lett. 80, 4402 (1998) CrossRefGoogle Scholar
  23. 23.
    D. Comparat, C. Drag, B.L. Tolra, A. Fioretti, P. Pillet, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, Eur. Phys. J. D 11, 59 (2000) CrossRefGoogle Scholar
  24. 24.
    J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, R. Kosloff, Phys. Rev. A 63, 013412 (2001) CrossRefGoogle Scholar
  25. 25.
    E. Luc-Koenig, R. Kosloff, F. Masnou-Seeuws, M. Vatasescu, Phys. Rev. A 70, 033414 (2004) CrossRefGoogle Scholar
  26. 26.
    J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, Phys. Rev. Lett. 115, 173003 (2015) CrossRefGoogle Scholar
  27. 27.
    J.L. Carini, S. Kallush, R. Kosloff, P.L. Gould, J. Phys. Chem. A 120, 3032 (2016) CrossRefGoogle Scholar
  28. 28.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998) CrossRefGoogle Scholar
  29. 29.
    K. Bergmann, N.V. Vitanov, B.W. Shore, J. Chem. Phys. 142, 170901 (2015) CrossRefGoogle Scholar
  30. 30.
    D.J. Tannor, S.A. Rice, J. Chem. Phys. 83, 5013 (1985) CrossRefGoogle Scholar
  31. 31.
    D.J. Tannor, R. Kosloff, S.A. Rice, J. Chem. Phys. 85, 5805 (1986) CrossRefGoogle Scholar
  32. 32.
    C. Brif, R. Chakrabarti, H. Rabitz, New J. Phys. 12, 075008 (2010) CrossRefGoogle Scholar
  33. 33.
    C.P. Koch, E. Luc-Koenig, F. Masnou-Seeuws, Phys. Rev. A 73, 033408 (2006) CrossRefGoogle Scholar
  34. 34.
    C.P. Koch, M. Shapiro, Chem. Rev. 112, 4928 (2012) CrossRefGoogle Scholar
  35. 35.
    V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, J. Chem. Phys. 110, 9865 (1999) CrossRefGoogle Scholar
  36. 36.
    K. Willner, O. Dulieu, F. Masnou-Seeuws, J. Chem. Phys. 120, 548 (2004) CrossRefGoogle Scholar
  37. 37.
    H. Tal-Ezer, R. Kosloff, J. Chem. Phys. 81, 3967 (1994) CrossRefGoogle Scholar
  38. 38.
    W. Zhang, Y. Huang, T. Xie, G.R. Wang, S.L. Cong, Phys. Rev. A 82, 063411 (2010) CrossRefGoogle Scholar
  39. 39.
    B.W. Shore, in The Theory of Coherent Atomic Excitation: Multilevel Atoms and Incoherence (Wiley, New York, 1990), Vol. 2, pp. 860–866 Google Scholar
  40. 40.
    J.C. Wright, T.J. Zielinski, J. Chem. Educ. 76, 1367 (1999) CrossRefGoogle Scholar
  41. 41.
    W.C. Stwalley, Y.-H. Uang, G. Pichler, Phys. Rev. Lett. 41, 1164 (1978) CrossRefGoogle Scholar
  42. 42.
    A. Fioretti, D. Comparat, C. Drag, C. Amiot, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Eur. Phys. J. D 5, 389 (1999) CrossRefGoogle Scholar
  43. 43.
    J.Z. Wu, W.L. Liu, Y.Q. Li, J. Ma, L.T. Xiao, S.T. Jia, JQSRT 191, 13 (2017) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bing Kuan Lyu
    • 1
  • Jing Lun Li
    • 1
  • Meng Wang
    • 1
  • Gao Ren Wang
    • 1
  • Shu Lin Cong
    • 1
    Email author
  1. 1.School of Physics, Dalian University of TechnologyDalianP.R. China

Personalised recommendations