Advertisement

Effects of field fluctuations on driven autoionizing resonances

  • George MouloudakisEmail author
  • Peter Lambropoulos
Regular Article
  • 41 Downloads

Abstract

The excitation of a resonance embedded in a continuum by intense radiation requires a theoretical description beyond the transition probability per unit time. This implies a time-dependent formulation incorporating all features of the radiation source, such as pulse temporal shape and duration, as well as stochastic properties, for pulses other than Fourier limited. The radiation from short wavelength free electron lasers is a case in point, as it is the only source that can provide the necessary intensity. In view of ongoing experiments with such sources, we present a systematic study for an isolated autoionizing resonance. We find that intensity, pulse duration and field fluctuations conspire in producing unexpected excitation profiles, not amenable to a description in terms of the usual Fano profile. In particular, the role of intensity fluctuations turns out to pose challenging theoretical problems part of which have been addressed herein.

Graphical abstract

Keywords

Atomic Physics 

References

  1. 1.
    E. Arimondo, C.W. Clark, W.C. Martin, Rev. Mod. Phys. 82, 2010 (1947) Google Scholar
  2. 2.
    A.T. Georges, P. Lambropoulos, Phys. Rev. A 20, 991 (1979) ADSCrossRefGoogle Scholar
  3. 3.
    A.T. Georges, P. Lambropoulos, P. Zoller, Phys. Rev. Lett. 42, 1609 (1979) ADSCrossRefGoogle Scholar
  4. 4.
    P. Lambropoulos, Appl. Opt. 19, 3926 (1980) ADSCrossRefGoogle Scholar
  5. 5.
    P. Lambropoulos, P. Zoller, Phys. Rev. A 24, 379 (1981) ADSCrossRefGoogle Scholar
  6. 6.
    S.I. Themelis, P. Lambropoulos, M. Meyer, J. Phys. B 37 4281 (2004) ADSCrossRefGoogle Scholar
  7. 7.
    L.B. Madsen, P. Lambropoulos, J. Phys. B 34, 1855 (2000) ADSCrossRefGoogle Scholar
  8. 8.
    L.B. Madsen, P. Schlagheck, P. Lambropoulos, Phys. Rev. A 62 062719 (2000) ADSCrossRefGoogle Scholar
  9. 9.
    L.B. Madsen, P. Schlagheck, P. Lambropoulos, Phys. Rev. Lett. 85, 42 (2000) ADSCrossRefGoogle Scholar
  10. 10.
    N.E. Karapanagioti, D. Charalambidis, C.J.G.J. Uiterwaal, C. Fotakis, H. Bachau, I. Sanchez, E. Cormier, Phys. Rev. A 53, 2587 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    Z.-H. Loh, C.H. Greene, S.R. Leone, Chem. Phys. 350, 7 (2007) CrossRefGoogle Scholar
  12. 12.
    C. Ott et al., Nature 516, 374 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, New J. Phys. 12, 035010 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    G. Mouloudakis, P. Lambropoulos, J. Phys. B 51, 01LT01 (2018) CrossRefGoogle Scholar
  15. 15.
    U. Fano, Phys. Rev. 124, 1866 (1961) ADSCrossRefGoogle Scholar
  16. 16.
    T. Nakajima, P. Lambropoulos, Phys. Rev. A 50, 595 (1994) ADSCrossRefGoogle Scholar
  17. 17.
    T. Nakajima, P. Lambropoulos, Phys. Rev. Lett. 70, 1081 (1993) ADSCrossRefGoogle Scholar
  18. 18.
    A. Papoulis, Probability, Variables, and Stochastic Processes (McGraw-Hill, New York, 1965) Google Scholar
  19. 19.
    J.R. Klauder, E.C Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968) Google Scholar
  20. 20.
    G.M. Nikolopoulos, P. Lambropoulos, Phys. Rev. A 86, 033420 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    G.M. Nikolopoulos, P. Lambropoulos, J. Phys. B 46, 16 (2013) CrossRefGoogle Scholar
  22. 22.
    E. Lindroth, Phys. Rev. A 49, 4473 (1994) ADSCrossRefGoogle Scholar
  23. 23.
    T.N. Rescigno, C.W. McCurdy, A.E. Orel, Phys. Rev. A 17, 1931 (1978) ADSCrossRefGoogle Scholar
  24. 24.
    F.F. C, Comput. Phys. Commun. 128, 635 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    G.M. Nikolopoulos, P. Lambropoulos, Eur. Phys. J. Special Topics 222, 118 (2013) Google Scholar
  26. 26.
    A.N. Artemyev, L.S. Cederbaum, P.V. Demekhin, Phys. Rev. A 96, 033410 (2017) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CreteHeraklion, CreteGreece
  2. 2.Institute of Electronic Structure and Laser, FORTHHeraklion, CreteGreece

Personalised recommendations