Collisional dynamics of multiple dark solitons in a toroidal Bose–Einstein condensate: quasiparticle picture

  • Horacio M. CataldoEmail author
  • Dora M. Jezek
Regular Article


We study the collisional dynamics of multiple dark solitons in a Bose–Einstein condensate confined by a toroidal trap. We assume a tight enough confinement in the radial direction to prevent possible dissipative effects due to the presence of solitonic vortices. Analytical expressions for the initial order parameters with imprinted phases are utilized to generate different initial arrays of solitons, for which the time-dependent Gross–Pitaevskii equation is numerically solved. Given that the soliton velocity is conserved due to the lack of dissipation, we are able to apply a simple quasiparticle description of the soliton dynamics. In fact, the trajectory equations are written in terms of the velocities and the angular shifts produced at each collision, in analogy to the infinite one-dimensional system. To calculate the angular shifts, we directly extract them from the trajectories given by the Gross–Pitaevskii simulations and, on the other hand, we show that accurate values can be analytically obtained by adapting a formula valid for the infinite one-dimensional system that involves the healing length, which in our inhomogeneous system must be evaluated in terms of the sound velocity along the azimuthal direction. We further show that very good estimates of such a sound velocity can be directly determined by using the ground state density profile and the values of the imprinted phases. We discuss the possible implementation of the system here proposed using the current experimental techniques.

Graphical abstract


Cold Matter and Quantum Gas 


  1. 1.
    B. Denardo, W. Wright, S. Putterman, A. Larraza, Phys. Rev. Lett. 64, 1518 (1990) ADSCrossRefGoogle Scholar
  2. 2.
    M. Chen, M.A. Tsankov, J.M. Nash, C.E. Patton, Phys. Rev. Lett. 70, 1707 (1993) ADSCrossRefGoogle Scholar
  3. 3.
    R. Heidemann, S. Zhdanov, R. Sütterlin, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 102, 135002 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    Y.S. Kivshar B. Luther-Davies, Phys. Rep. 298, 81 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1971) ADSCrossRefGoogle Scholar
  6. 6.
    V.E. Zakharov, A.B. Shabat, Zh. Eksp. Teor. Fiz. 64, 1627 (1973) Google Scholar
  7. 7.
    L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford University Press, Oxford, 2003) Google Scholar
  8. 8.
    V.V. Konotop, Emergent Nonlinear Phenomena in Bose-Einstein Condensates (Springer-Verlag, Heidelberg, 2008) Google Scholar
  9. 9.
    G. Theocharis, A. Weller, J.P. Ronzheimer, C. Gross, M.K. Oberthaler, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. A 81, 063604 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    D.J. Frantzeskakis, J. Phys. A: Math. Theor. 43, 213001 (2010) ADSCrossRefGoogle Scholar
  11. 11.
    S. Donadello, S. Serafini, M. Tylutki, L.P. Pitaevskii, F. Dalfovo, G. Lamporesi, G. Ferrari, Phys. Rev. Lett. 113, 065302 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    M.J.H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L.W. Cheuk, T. Yefsah, M.W. Zwierlein, Phys. Rev. Lett. 113, 065301 (2014) ADSCrossRefGoogle Scholar
  13. 13.
    F. Chevy, Physics 7, 82 (2014) CrossRefGoogle Scholar
  14. 14.
    G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, G. Ferrari, Nat. Phys. 9, 656 (2013) CrossRefGoogle Scholar
  15. 15.
    P.O. Fedichev, A.E. Muryshev, G.V. Shlyapnikov, Phys. Rev. A 60, 3220 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    T. Busch, J.R. Anglin, Phys. Rev. Lett 84, 2298 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    V.V. Konotop, L. Pitaevskii, Phys. Rev. Lett. 93, 240403 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    C. Becker, S. Stellmer, P. Soltan-Panahi, S. Dörscher, M. Baumert, E.M. Richter, J. Kronjäger, K. Bongs, K. Sengstock, Nat. Phys. 4, 496 (2008) CrossRefGoogle Scholar
  19. 19.
    D.C. Wadkin-Snaith, D.M. Gangardt, Phys. Rev. Lett 108, 085301 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Jezek, P. Capuzzi, H.M. Cataldo, Phys. Rev. A 93, 023601 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    D. Gallucci, N.P. Proukakis, New J. Phys. 18, 025004 (2016) ADSCrossRefGoogle Scholar
  22. 22.
    C. Ryu, P.W. Blackburn, A.A. Blinova, M.G. Boshier, Phys. Rev. Lett. 111, 205301 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    F. Jendrzejewski, S. Eckel, N. Murray, C. Lanier, M. Edwards, C.J. Lobb, G.K. Campbell, Phys. Rev. Lett. 113, 045305 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    C. Ryu, M.F. Andersen, P. Cladé, V. Natarajan, K. Helmerson, W.D. Phillips, Phys. Rev. Lett. 99, 260401 (2007) ADSCrossRefGoogle Scholar
  25. 25.
    B.T. Seaman, M. Krämer, D.Z. Anderson, M.J. Holland, Phys. Rev. A 75, 023615 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    S. Eckel, J.G. Lee, F. Jendrzejewski, N. Murray, C.W. Clark, C.J. Lobb, W.D. Phillips, M. Edwards, G.K. Campbell, Nature 506, 200 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    A. Kumar, R. Dubessy, T. Badr, C. De Rossi, M. de Goër de Herve, L. Longchambon, H. Perrin, Phys. Rev. A 97, 043615 (2018) ADSCrossRefGoogle Scholar
  28. 28.
    N. Murray, M. Krygier, M. Edwards, K.C. Wright, G.K. Campbell, C.W. Clark, Phys. Rev. A 88, 053615 (2013) ADSCrossRefGoogle Scholar
  29. 29.
    Y. Castin, R. Dum, Eur. Phys. J. D 7, 399 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    L.D. Carr, C.W. Clark, W.P. Reinhardt, Phys. Rev. A 62, 063610 (2000) ADSCrossRefGoogle Scholar
  31. 31.
    J.H.V. Nguyen, P. Dyke, D. Luo, B.A. Malomed, R.G. Hulet, Nat. Phys. 10, 918. (2014) CrossRefGoogle Scholar
  32. 32.
    S. Stellmer, C. Becker, P. Soltan-Panahi, E.-M. Richter, S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, K. Sengstock, Phys. Rev. Lett. 101, 120406 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    G. Huang, M.G. Velarde, V.A. Makarov, Phys. Rev. A 64, 013617 (2001) ADSCrossRefGoogle Scholar
  34. 34.
    G.M. Kavoulakis, C.J. Pethick, Phys. Rev. A58, 1563 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de FísicaBuenos AiresArgentina
  2. 2.IFIBA, CONICETBuenos AiresArgentina

Personalised recommendations