Advertisement

Retardation in electron dynamics simulations based on time-dependent density functional theory

  • Xiaojing Wu
  • Aurelio Alvarez-Ibarra
  • Dennis R. Salahub
  • Aurélien de la LandeEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

When a molecular system is subjected to an external electric perturbation, originating from an electromagnetic wave or from a charged moving particle (in molecule-ion collisions), the electrons are the first particles to respond, on the attosecond timescale. Electron dynamics (ED) can be simulated by so-called real-time time-dependent density functional theory (RT-TDDFT). Within this framework, ED is driven by the electrostatic potential and by exchange-correlation potentials that fluctuate on the attosecond time scale. In vacuum the speed of light approaches 3 Å as−1. Therefore, when simulating ED in extended molecular systems the question of retardation in the propagation of the potentials has to be posed. In this contribution we investigate two types of retardation; the first one deals with retardation in the potential created by a collision with a charged projectile. This is done through the Liénard-Wiechert potential (LWP). The second one deals with retardation in the electrostatic interaction between the time-dependent electron density and its environment, here in the context of hybrid schemes coupling RT-TDDFT to polarizable Molecular Mechanics force fields (MMpol). We found that the latter retardation effects can be safely neglected because of the rapid damping vs. distance of the electric fields created by electrostatic dipole moments. This conclusion is also relevant for methodologies, coupling RT-TDDFT to implicit polarizable continuum models. On the other hand, our results recommend the use of the LWP for modelling molecule-ion collisions by first-principles simulations. Remarkably, ionization takes place on faster time scales when relativistic corrections are introduced even for incident kinetic energies of 0.1 MeV.

Graphical abstract

References

  1. 1.
    P. Wopperer, P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 562, 1 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    I. Tavernelli, Acc. Chem. Res. 48, 792 (2015) CrossRefGoogle Scholar
  3. 3.
    J. Theilhaber, Phys. Rev. B 46, 12990 (1992) ADSCrossRefGoogle Scholar
  4. 4.
    K. Yabana, G.F. Bertsch, Phys. Rev. B 54, 4484 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    F. Calvayrac, P.G. Reinhard, E. Suraud, Phys. Rev. B 52, R17056 (1995) ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Ullrich, I.V. Tokatly, Phys. Rev. B 73, 235102 (2006) ADSCrossRefGoogle Scholar
  7. 7.
    M. Thiele, E.K.U. Gross, S. Kümmel, Phys. Rev. Lett. 100, 153004 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Escartín, M. Vincendon, P. Romaniello, P.M. Dinh, P.G. Reinhard, E. Suraud, J. Chem. Phys. 142, 084118 (2015) ADSCrossRefGoogle Scholar
  9. 9.
    X. Wu, J.-M. Teuler, F. Cailliez, C. Clavaguéra, D.R. Salahub, A. de la Lande, J. Chem. Theory Comput. 13, 3985 (2017) CrossRefGoogle Scholar
  10. 10.
    G. Donati, A. Wildman, S. Caprasecca, D.B. Lingerfelt, F. Lipparini, B. Mennucci, X. Li, J. Phys. Chem. Lett. 8, 5283 (2017) CrossRefGoogle Scholar
  11. 11.
    P.M. Dinh, P.G. Reinhard, E. Suraud, Phys. Rep. 485, 43 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976) CrossRefGoogle Scholar
  13. 13.
    M. Repisky, L. Konecny, M. Kadek, S. Komorovsky, O.L. Malkin, V.G. Malkin, K. Ruud, J. Chem. Theory Comput. 11, 980 (2015) CrossRefGoogle Scholar
  14. 14.
    G. Breit, Phys. Rev. 34, 553 (1929) ADSCrossRefGoogle Scholar
  15. 15.
    R.P. Feynman, in The Feynman Lectures on Physics, edited by M. Gottlieb, R. Pfeiffer (California Institute of Technology, California, 1963, 2006, 2013, 2018), Vol. II Google Scholar
  16. 16.
    C. Covington, K. Hartig, A. Russakoff, R. Kulpins, K. Varga, Phys. Rev. A 95, 052701 (2017) ADSCrossRefGoogle Scholar
  17. 17.
    R. Nagano, K. Yabana, T. Tazawa, Y. Abe, J. Phys. B 32, L65 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    X. Hong, F. Wang, Y. Wu, B. Gou, J. Wang, Phys. Rev. A 93, 062706 (2016) ADSCrossRefGoogle Scholar
  19. 19.
    A. Russakoff, Y. Li, S. He, K. Varga, J. Chem. Phys. 144, 204125 (2016) ADSCrossRefGoogle Scholar
  20. 20.
    A. Parise, A. Alvarez-Ibarra, X. Wu, X. Zhao, J. Pilmé, A.d.l. Lande, J. Phys. Chem. Lett. 9, 844 (2018) CrossRefGoogle Scholar
  21. 21.
    I. Stetcu, C.A. Bertulani, A. Bulgac, P. Magierski, K.J. Roche, Phys. Rev. Lett. 114, 012701 (2015) ADSCrossRefGoogle Scholar
  22. 22.
    C.K. Whitney, Hadronic J. 11, 257 (1988) MathSciNetGoogle Scholar
  23. 23.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964) ADSCrossRefGoogle Scholar
  24. 24.
    A. Castro, M.A.L. Marques, A. Rubio, J. Chem. Phys. 121, 3425 (2004) ADSCrossRefGoogle Scholar
  25. 25.
    M. Hochbruck, A. Ostermann, Acta Numerica 19, 209 (2010) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Kidd, C. Covington, K. Varga, Phys. Rev. E 96, 063307 (2017) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    A. Gómez Pueyo, M.A.L. Marques, A. Rubio, A. Castro, J. Chem. Theory Comput. 14, 3030 (2018) Google Scholar
  28. 28.
    W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954) CrossRefGoogle Scholar
  29. 29.
    A.M. Köster, G. Geudtner, A. Alvarez-Ibarra, P. Calaminici, M.E. Casida, J. Carmona-Espindola, V. Dominguez, R. Flores-Moreno, G.U. Gamboa, A. Goursot, T. Heine, A. Ipatov, A. de la Lande, F. Janetzko, J.-M. del Campo, D. Mejia-Rodriguez, J. Reveles, J. Vasquez-Perez, A. Vela, B. Zuniga-Gutierrez, D.R. Salahub, deMon2k Version 5 (CInvestav, Mexico City, 2016) Google Scholar
  30. 30.
    A.M. Köster, J.M.d. Campo, F. Janetzko, B. Zuniga-Gutierrez, J. Chem. Phys. 130, 114106 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77 and 90, 2nd edn. (Cambridge University Press, Cambridge, 2001) Google Scholar
  32. 32.
    P. Calaminici, A. Alvarez-Ibarra, D. Cruz-Olvera, V.-D. Dominguez-Soria, R. Flores-Moreno, G.U. Gamboa, G. Geudtner, A. Goursot, D. Mejía-Rodríguez, D.R. Salahub, B. Zuniga-Gutierrez, A. Köster, in Handbook of Computational Chemistry, edited by J. Leszczynski (Springer Netherlands, Dordrecht, 2016), p. 1 Google Scholar
  33. 33.
    B.I. Dunlap, N. Rösch, S.B. Trickey, Mol. Phys. 108, 3167 (2010) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    P. Calaminici, R. Flores-Moreno, A. Köster, Comput. Lett. 1, 164 (2005) CrossRefGoogle Scholar
  36. 36.
    A.M. Köster, R. Flores-Moreno, J.U. Reveles, J. Chem. Phys. 121, 681 (2004) ADSCrossRefGoogle Scholar
  37. 37.
    J.W. Caldwell, P.A. Kollman, J. Phys. Chem. 99, 6208 (1995) CrossRefGoogle Scholar
  38. 38.
    Y. Hatano, A. Mozumder, in Charged Particle and Photon Interactions with Matter (CRC Press, Boca Raton, 2003) Google Scholar
  39. 39.
    P. Krause, J.A. Sonk, H.B. Schlegel, J. Chem. Phys. 140, 174113 (2014) ADSCrossRefGoogle Scholar
  40. 40.
    A. Sissay, P. Abanador, F. Mauger, M. Gaarde, K.J. Schafer, K. Lopata, J. Chem. Phys. 145, 094105 (2016) ADSCrossRefGoogle Scholar
  41. 41.
    J. Carmona-Espíndola, J.L. Gázquez, A. Vela, S.B. Trickey, J. Chem. Phys. 142, 054105 (2015) ADSCrossRefGoogle Scholar
  42. 42.
    A. Mozumder, in Charged Particle and Photon Interactions with Matter (CRC Press, Boca Raton, 2003) Google Scholar
  43. 43.
    P.D. Nguyen, F. Ding, S.A. Fischer, W. Liang, X. Li, J. Phys. Chem. Lett. 3, 2898 (2012) CrossRefGoogle Scholar
  44. 44.
    S. Corni, S. Pipolo, R. Cammi, J. Phys. Chem. A 119, 5405 (2015) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaojing Wu
    • 1
  • Aurelio Alvarez-Ibarra
    • 1
  • Dennis R. Salahub
    • 2
    • 3
  • Aurélien de la Lande
    • 1
    Email author
  1. 1.Laboratoire de Chimie Physique, Université Paris Sud – CNRS. Université Paris SaclayOrsay CedexFrance
  2. 2.Department of ChemistryCentre for Molecular Simulation, Institute for Quantum Science and Technology and Quantum Alberta, University of CalgaryCalgaryCanada
  3. 3.College of Chemistry and Chemical Engineering, Henan University of TechnologyZhengzhouP.R. China

Personalised recommendations