Phase and amplitude control of microwave pulse in a linear array of superconducting artificial atoms

  • Mir Qad Ayaz
  • Sajid Qamar
  • Shahid QamarEmail author
Regular Article


Based on phase controlled electromagnetically induced transparency, we propose a scheme for coherent control and storage of a microwave pulse in a linear array of artificial atoms. In particular, we consider the effects of the amplitude and phase of the fields driving the superconducting artificial atoms attached to a one-dimensional transmission line on the storage of a microwave pulse. We show that controlling the relative-phase of the microwave fields coupling the artificial atoms in a three-level Δ-configuration can yield tunable transparency window, which allows the propagation of a microwave pulse. The amplitude-control of the lower-levels coupling field adds a gain signature to the transparency window. Our results show that the absorption of the probe microwave pulse is suppressed and it gets amplified while propagating through an array of artificial atoms. The group velocity of the probe pulse is considerably reduced as a result atoms in a linear array act as coherent microwave memories.

Graphical abstract


Quantum Information 


  1. 1.
    X. Gu, A.F. Kockum, A. Miranowicz, Y. Xi Liu, F. Nori, Phys. Rep. 718-719, 1 (2017) CrossRefGoogle Scholar
  2. 2.
    A.A. Abdumalikov Jr., O. Astafiev, A.M. Zagoskin, Yu. A. Pashkin, Y. Nakamura, J.S. Tsai, Phys. Rev. Lett. 104, 193601 (2010) CrossRefGoogle Scholar
  3. 3.
    M. Marthaler, Y. Utsumi, D.S. Golubev, A. Shnirman, G. Schön, Phys. Rev. Lett. 107, 093901 (2011) CrossRefGoogle Scholar
  4. 4.
    G.L. Cheng, Y.P. Weng, W.X. Zhong, A.X. Chen, Ann. Phys. 353, 64 (2015) CrossRefGoogle Scholar
  5. 5.
    W.R. Kelly, Z. Dutton, J. Schlafer, B. Mookerji, T.A. Ohki, Phys. Rev. Lett. 104, 163601 (2010) CrossRefGoogle Scholar
  6. 6.
    X.Y. Lu, Z.L. Xiang, W. Cui, J.Q. You, F. Nori, Phys. Rev. A 88, 012329 (2013) CrossRefGoogle Scholar
  7. 7.
    M. Reagor et al., Phys. Rev. B 94, 014506 (2016) CrossRefGoogle Scholar
  8. 8.
    A. Megrant et al., Appl. Phys. Lett. 100, 113510 (2012) CrossRefGoogle Scholar
  9. 9.
    P. Rabl et al., Phys. Rev. Lett. 97, 033003 (2006) CrossRefGoogle Scholar
  10. 10.
    D.I. Schuster et al., Phys. Rev. Lett. 105, 140501 (2010) CrossRefGoogle Scholar
  11. 11.
    Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J.F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Phys. Rev. Lett. 105, 140502 (2010) CrossRefGoogle Scholar
  12. 12.
    J.T. Shen, M.L. Povinelli, S. Sandhu, S. Fan, Phys. Rev. B 75, 035320 (2007) CrossRefGoogle Scholar
  13. 13.
    P.M. Leung , B.C. Sanders, Phys. Rev. Lett. 109, 253603 (2012) CrossRefGoogle Scholar
  14. 14.
    M.Q. Ayaz, M. Waqas, S. Qamar, S. Qamar, Phys. Rev. A 97, 022318 (2018) CrossRefGoogle Scholar
  15. 15.
    J. Joo, J. Bourassa, A. Blais, B.C. Sanders, Phys. Rev. Lett. 105, 073601 (2010) CrossRefGoogle Scholar
  16. 16.
    I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, J.E. Mooij, Science 299, 1869 (2003) CrossRefGoogle Scholar
  17. 17.
    Y. Nakamura, Yu. A. Pashkin, J.S. Tsai, Nature 398, 786 (1999) CrossRefGoogle Scholar
  18. 18.
    J. Koch, T.M. Yu, J. Gambetta, A.A. Houck, D.I. Schuster, J. Majer, A. Blais, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 76, 042319 (2007) CrossRefGoogle Scholar
  19. 19.
    V.E. Manucharyan, J. Koch, L.I. Glazman, M.H. Devoret, Science 326, 113 (2009) CrossRefGoogle Scholar
  20. 20.
    V.E. Manucharyan, Ph.D Thesis, Yale University, 2012 Google Scholar
  21. 21.
    M. Manjappa, S.S. Undurti, A. Karigowda, A. Narayanan, B.C. Sanders, Phys. Rev. A 90, 043859 (2014) CrossRefGoogle Scholar
  22. 22.
    O. Astafiev et al., Science 327, 840 (2010) CrossRefGoogle Scholar
  23. 23.
    H. Lu, X. Liu, D. Mao, Phys. Rev. A 85, 053803 (2012) CrossRefGoogle Scholar
  24. 24.
    P. Lambropoulos, D. Petrosyan, Fundamentals of quantum optics and quantuminformation (Springer-Verlag, Berlin, 2006) Google Scholar
  25. 25.
    C.M. Wilson et al., Nature (Lond.) 479, 376 (2011) CrossRefGoogle Scholar
  26. 26.
    A. Eilam, A.D. Wilson-Gordon, H. Friedmann, Opt. Lett. 34, 1834 (2009) CrossRefGoogle Scholar
  27. 27.
    H. Li et al., Phys. Rev. A 80, 023820 (2009) CrossRefGoogle Scholar
  28. 28.
    D. Schraft, M. Hain, N. Lorenz, T. Halfmann, Phys. Rev. Lett. 116, 073602 (2016) CrossRefGoogle Scholar
  29. 29.
    V.E. Manucharyan, N A. Masluk, A. Kamal, J. Koch, L.I. Glazman, M.H. Devoret, Phys. Rev. B 85, 024521 (2012) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and Applied MathematicsPakistan Institute of Engineering and Applied SciencesNilore, IslamabadPakistan
  2. 2.Department of Basic Sciences and IslamiatUniversity of Engineering and TechnologyPeshawarPakistan
  3. 3.Quantum Optics Lab, Department of Physics, COMSATS UniversityIslamabadPakistan
  4. 4.Centre for Mathematical Sciences and Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied SciencesNilore, IslamabadPakistan

Personalised recommendations