Advertisement

Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems

  • Mohamed Amazioug
  • Mostafa Nassik
  • Nabil Habiballah
Regular Article
  • 18 Downloads

Abstract

The aim of the present paper is the quantification of non-classical correlations between mechanical and optical modes in an optomechanical system with two spatially separated Fabry-Pérot cavities, using resolver sideband regime. To measure the amount of stationary entanglement, we use the criterion of Reid et al, while the evolution of the Gaussian quantum steering and its asymmetry make it possible to study the steerability of the correlations transfer between the different modes. Then, a theoretical study of the robustness of the Gaussian geometric discord (GGD), with respect to the temperature of the environment, is realized, for the two-mode symmetrical squeezed thermal states, to quantify quantum correlations beyond entanglement between mechanical and optical modes. By considering recent experimental parameters, we show that GGD is more robust than entanglement for a high thermal bath temperature. Finally, we find that these three indicators of quantumness enhance with the increase of the squeezing parameter.

Graphical abstract

Keywords

Quantum Optics 

References

  1. 1.
    S. Huang, G.S. Agarwal, New J. Phys. 11, 103044 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    L. Tian, H. Wang, Phys. Rev. A 82, 053806 (2010) ADSCrossRefGoogle Scholar
  3. 3.
    Y.-D. Wang, A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    L. Tian, Phys. Rev. Lett. 108, 153604 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    S. Singh, H. Jing, E.M. Wright, P. Meystre, Phys. Rev. A 86, 021801 (2012) ADSCrossRefGoogle Scholar
  6. 6.
    S.A. McGee, D. Meiser, C.A. Regal, K.W. Lehnert, M.J. Holland, Phys. Rev. A 87, 053818 (2013) ADSCrossRefGoogle Scholar
  7. 7.
    T.A. Palomaki, J.W. Harlow, J.D. Teufel, R.W. Simmonds, K.W. Lehnert, Nature 495, 210 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    E.A. Sete, H. Eleuch, C.H.R. Ooi, J. Opt. Soc. Am. B 31, 2821 (2014) ADSCrossRefGoogle Scholar
  9. 9.
    J. El Qars, M. Daoud, Ahl Laamara, Int. J. Quant. Inform. 13, 1550041 (2015) CrossRefGoogle Scholar
  10. 10.
    M. Amazioug, M. Nassik, N. Habiballah, Optik 158, 1186 (2018) ADSCrossRefGoogle Scholar
  11. 11.
    M.D. Reid, Phys. Rev. A 40, 913 (1989) ADSCrossRefGoogle Scholar
  12. 12.
    G. Adesso, D. Girolami, Int. J. Quant. Info. 9, 1773 (2011) CrossRefGoogle Scholar
  13. 13.
    I. Kogias, A.R. Lee, S. Ragy, G. Adesso, Phys. Rev. Lett. 114, 060403 (2015) ADSCrossRefGoogle Scholar
  14. 14.
    M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391 (2014) ADSCrossRefGoogle Scholar
  16. 16.
    L. Tian, H. Wang, Phys. Rev. A 82, 053806 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    Y.-D. Wang, A.A. Clerk, Phys. Rev. Lett. 108, 153603 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    M. Pinard, A. Dantan, D. Vitali, O. Arcizet, T. Briant, A. Heidmann, Europhys. Lett. 72, 747 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    V. Giovannetti, D. Vitali, Phys. Rev. A 63, 023812 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    C.W. Gardiner, P. Zoller, in Quantum Noise (Springer, Berlin, 2000), p. 71 Google Scholar
  21. 21.
    C.W. Gardiner, Phys. Rev. Lett. 56, 1917 (1986) ADSCrossRefGoogle Scholar
  22. 22.
    E.A. Sete, H. Eleuch, S. Das, Phys. Rev. A 84, 053817 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    Y.D. Wang, S. Chesi, A.A. Clerk, Phys. Rev. A 91, 013807 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    A. Mari, J. Eisert, Phys. Rev. Lett. 103, 213603 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    E.X. DeJesus, C. Kaufman, Phys. Rev. A 35, 5288 (1987) ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Vitali et al., Phys. Rev. Lett. 98, 030405 (2007) ADSCrossRefGoogle Scholar
  27. 27.
    P.C. Parks, V. Hahn, Stability Theory (Prentice Hall, New York, 1993) Google Scholar
  28. 28.
    M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, Rev. Mod. Phys. 81, 1727 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    M.D. Reid, Phys. Rev. A 62, 062308 (2000) ADSCrossRefGoogle Scholar
  30. 30.
    S. Groblacher, K. Hammerer, M.R. Vanner, M. Aspelmeyer, Nature (London) 460, 724 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    M. Daoud, R.A. Laamara, Phys. Lett. A 376, 2361 (2012) ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    A. AlQasimi, D.F.V. James, Phys. Rev. A 77, 012117 (2008) ADSCrossRefGoogle Scholar
  33. 33.
    G. Adesso, D. Girolami, A. Serafini, Phys. Rev. Lett. 109, 190502 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    G. Adesso, F. Illuminati, Phys. Rev. A 72, 032334 (2005) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohamed Amazioug
    • 1
  • Mostafa Nassik
    • 1
  • Nabil Habiballah
    • 1
    • 2
    • 3
  1. 1.EPTHE, Department of Physics, Faculty of Sciences, Ibn Zohr UniversityAgadirMorocco
  2. 2.Faculty of Applied Sciences, Ibn Zohr UniversityAit-MelloulMorocco
  3. 3.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations