Advertisement

Tunneling ionization of atoms and ions in a linear electromagnetic wave and a constant magnetic field and the “imaginary time” method

  • Vyacheslav M. RylyukEmail author
Regular Article
  • 15 Downloads

Abstract

The tunneling ionization of atoms and negative ions in an intense linearly polarized laser field and a constant uniform magnetic field is discussed in the quasiclassical theory framework. We use the “imaginary time” method, where tunneling is described by the classical equations of motion but with purely imaginary “time” to derive the extremal subbarrier trajectory of the photoelectron. This allows to obtain simple analytical expressions for ionization rates in the tunneling regime for an arbitrary angle between a laser beam and a constant magnetic field accounting for the Coulomb interaction of the photoelectron with the atomic core. The resonance case, when the frequency of a monochromatic electromagnetic wave and the cyclotron frequency are equal, is also considered. The limits of weak and strong magnetic fields and the expressions for the barrier width and the emission angle of photoelectrons are discussed. It is shown that a magnetic field in the presence of a linear electromagnetic wave increases the barrier width and thus decreases the ionization probability, i.e., stabilizes the bound level.

Graphical abstract

Keywords

Ultraintense and Ultra-short Laser Fields 

References

  1. 1.
    I. Barth, O. Smirnova, Phys. Rev. A 87, 013433 (2013) ADSCrossRefGoogle Scholar
  2. 2.
    S.V. Popruzhenko, V.D. Mur, V.S. Popov, D. Bauer, Zh. Eksp. Teor. Fiz. 135, 1092 (2009) Google Scholar
  3. 3.
    S.V. Popruzhenko, V.D. Mur, V.S. Popov, D. Bauer, JETP 108, 947 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H.R. Reiss, Phys. Rev. Lett. 102, 143003 (2009) ADSCrossRefGoogle Scholar
  5. 5.
    L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 1964 Google Scholar
  6. 6.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965) Google Scholar
  7. 7.
    Y.N. Demkov, V.N. Ostrovskii, Zero-Range Potentials and Their Applications in Atomic Physics (Plenum, New York, 1988) Google Scholar
  8. 8.
    Yu.N. Demkov, G.F. Drukaryev, Zh. Eksp. Teor. Fiz. 47, 918 (1964) Google Scholar
  9. 9.
    Yu.N. Demkov, G.F. Drukaryev, Sov. Phys. JETP 20, 614 (1965) Google Scholar
  10. 10.
    Yu.N. Demkov, G.F. Drukaryev, Zh. Eksp. Teor. Fiz. 49, 257 (1965) Google Scholar
  11. 11.
    Yu.N. Demkov, G.F. Drukaryev, Sov. Phys. JETP 22, 182 (1965) ADSGoogle Scholar
  12. 12.
    G.F. Drukaryev, B.S. Monozon, Zh. Eksp. Teor. Fiz. 61, 956 (1971) Google Scholar
  13. 13.
    G.F. Drukaryev, B.S. Monozon, Sov. Phys. JETP 34, 509 (1972) ADSGoogle Scholar
  14. 14.
    N.L. Manakov, A.G. Fainshtein, Dokl. Akad. Nauk SSSR 244, 567 (1979) Google Scholar
  15. 15.
    N.L. Manakov, A.G. Fainshtein, Sov. Phys. Dokl. 24, 41 (1979) ADSGoogle Scholar
  16. 16.
    N.L. Manakov, A.G. Fainshtein, Zh. Eksp. Teor. Fiz. 79, 751 (1980) Google Scholar
  17. 17.
    N.L. Manakov, A.G. Fainshtein, Sov. Phys. JETP 52, 382 (1980) ADSGoogle Scholar
  18. 18.
    V.M. Rylyuk, J. Ortner, Phys. Rev. A 67, 013414 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Rylyuk, Phys. Rev. A 86, 013402 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    V.M. Rylyuk, Phys. Rev. A 93, 053404 (2016) ADSCrossRefGoogle Scholar
  21. 21.
    A.I. Nikishov, V.I. Ritus, Zh. Eksp. Teor. Fiz. 50, 255 (1966) Google Scholar
  22. 22.
    A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 23, 168 (1966) ADSGoogle Scholar
  23. 23.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966) Google Scholar
  24. 24.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 23, 924 (1966) ADSGoogle Scholar
  25. 25.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Zh. Eksp. Teor. Fiz. 51, 309 (1966) Google Scholar
  26. 26.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Sov. Phys. JETP 24, 207 (1967) ADSGoogle Scholar
  27. 27.
    V.S. Popov, Zh. Eksp. Teor. Fiz. 118, 56 (2000) Google Scholar
  28. 28.
    V.S. Popov, JETP 91, 48 (2000) ADSCrossRefGoogle Scholar
  29. 29.
    J. Ortner, V.M. Rylyuk, J. Phys. B: At. Mol. Opt. Phys. 34, 3251 (2001) ADSCrossRefGoogle Scholar
  30. 30.
    A.M. Perelomov, V.S. Popov, Zh. Eksp. Teor. Fiz. 52, 514 (1967) Google Scholar
  31. 31.
    A.M. Perelomov, V.S. Popov, Sov. Phys. JETP 25, 336 (1967) ADSGoogle Scholar
  32. 32.
    A.I. Nikishov, V.I. Ritus, Zh. Eksp. Teor. Fiz. 52, 223 (1967) Google Scholar
  33. 33.
    A.I. Nikishov, V.I. Ritus, Sov. Phys. JETP 25, 145 (1967) ADSGoogle Scholar
  34. 34.
    V.S. Popov, V.D. Mur, S.V. Popruzhenko, Pis’ma Zh. Eksp. Teor. Fiz. 85, 275 (2007) Google Scholar
  35. 35.
    V.S. Popov, V.D. Mur, S.V. Popruzhenko, JETP Lett. 85, 223 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    N.B. Delone, V.P. Krainov, Usp. Fiz. Nauk 168, 531 (1998) CrossRefGoogle Scholar
  37. 37.
    N.B. Delone, V.P. Krainov, Phys. Usp. 41, 469 (1998) ADSCrossRefGoogle Scholar
  38. 38.
    V.S. Popov, Usp. Fiz. Nauk 174, 921 (2004) CrossRefGoogle Scholar
  39. 39.
    V.S. Popov, Sov. Phys. Usp. 47, 855 (2004) CrossRefGoogle Scholar
  40. 40.
    W. Becker, X.J. Liu, P.J. Ho, J.H. Eberly, Rev. Mod. Phys. 84, 1011 (2012) ADSCrossRefGoogle Scholar
  41. 41.
    S.V. Popruzhenko, J. Phys. B: At. Mol. Opt. Phys. 47, 204001 (2014) ADSCrossRefGoogle Scholar
  42. 42.
    B.M. Karnakov, V.D. Mur, S.V. Popruzhenko, V.S. Popov, Usp. Fiz. Nauk 185, 3 (2015) CrossRefGoogle Scholar
  43. 43.
    B.M. Karnakov, V.D. Mur, S.V. Popruzhenko, V.S. Popov, Sov. Phys. Usp. 58, 3 (2015) CrossRefGoogle Scholar
  44. 44.
    V.S. Popov, V.P. Kuznetsov, A.M. Perelomov, Zh. Eksp. Teor. Fiz. 53, 331 (1967) Google Scholar
  45. 45.
    V.S. Popov, V.P. Kuznetsov, A.M. Perelomov, Sov. Phys. JETP 26, 222 (1968) ADSGoogle Scholar
  46. 46.
    V.S. Popov, V.D. Mur, B.M. Karnakov, Pis’ma Zh. Eksp. Teor. Fiz. 66, 213 (1997) Google Scholar
  47. 47.
    V.S. Popov, V.D. Mur, B.M. Karnakov, JETP Lett. 66, 229 (1997) ADSCrossRefGoogle Scholar
  48. 48.
    V.D. Mur, B.M. Karnakov, V.S. Popov, Zh. Eksp. Teor. Fiz. 114, 798 (1998) Google Scholar
  49. 49.
    V.D. Mur, B.M. Karnakov, V.S. Popov, JETP 87, 433 (1998) ADSCrossRefGoogle Scholar
  50. 50.
    J. Ortner, V.M. Rylyuk, Phys. Rev. A 61, 033403 (2000) ADSCrossRefGoogle Scholar
  51. 51.
    L.I. Kotova, A.M. Perelomov, V.S. Popov, Zh. Eksp. Teor. Fiz. 54, 1151 (1968) Google Scholar
  52. 52.
    L.I. Kotova, A.M. Perelomov, V.S. Popov, Sov. Phys. JETP 27, 616 (1968) ADSGoogle Scholar
  53. 53.
    V.S. Popov, A.V. Sergeev, Pis’ma Zh. Eksp. Teor. Fiz. 63, 398 1996 Google Scholar
  54. 54.
    V.S. Popov, A.V. Sergeev, JETP Lett. 63, 417 (1996) ADSCrossRefGoogle Scholar
  55. 55.
    V.S. Popov, B.M. Karnakov, V.D. Mur, Zh. Eksp. Teor. Fiz. 113, 1579 (1998) Google Scholar
  56. 56.
    V.S. Popov, B.M. Karnakov, V.D. Mur, JETP 86, 860 (1998) ADSCrossRefGoogle Scholar
  57. 57.
    M. Steinberg, J. Ortner, Phys. Rev. B 58, 15460 (1998) ADSCrossRefGoogle Scholar
  58. 58.
    G. Sarri et al., Phys. Rev. Lett. 109, 205002 (2012) ADSCrossRefGoogle Scholar
  59. 59.
    M. Tatarakis et al., Nature (London) 398, 489 (2002) Google Scholar
  60. 60.
    M. Tatarakis et al., Phys. Plasmas 9, 3642 (2002) ADSCrossRefGoogle Scholar
  61. 61.
    U. Wagner et al., Phys. Rev. E 70, 026401 (2004) ADSCrossRefGoogle Scholar
  62. 62.
    I. Seippand, W. Schweizer, Astron. Astrophys. 318, 990 (1997) ADSGoogle Scholar
  63. 63.
    I. Seipp, K.T. Taylor, W. Schweizer, J. Phys. B 29, 1 (1996) ADSMathSciNetGoogle Scholar
  64. 64.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, 3rd revised edn. (Pergamon, Oxford, 1977) Google Scholar
  65. 65.
    V.D. Mur, S.V. Popruzhenko, V.S. Popov, Zh. Eksp. Teor. Fiz. 119, 893 (2001) Google Scholar
  66. 66.
    V.D. Mur, S.V. Popruzhenko, V.S. Popov, JETP 92, 777 (2001) ADSCrossRefGoogle Scholar
  67. 67.
    V.S. Popov, B.M. Karnakov, V.D. Mur, Zh. Eksp. Teor. Fiz. 115, 1642 (1999) Google Scholar
  68. 68.
    V.S. Popov, B.M. Karnakov, V.D. Mur, JETP 88, 902 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Academy of Sciences of Ukraine “Hydroacoustic Branch of Geophysical Institute of NAS of Ukraine”OdessaUkraine

Personalised recommendations