Advertisement

Low-energy electron scattering from fullerenes and heavy complex atoms: negative ions formation

  • Alfred Z. MsezaneEmail author
  • Zineb Felfli
Regular Article
Part of the following topical collections:
  1. Topical Issue: Atomic Cluster Collisions

Abstract

Regge poles are generalized bound states. Our robust Regge pole methodology that embeds the crucial electron correlation effects and the vital polarization interaction is used to investigate negative ions formation in low-energy electron elastic scattering from the fullerenes Cn (n = 24, 28, 44, 60, 70, 74, 82, 94, 100, and 140) and the selected heavy lanthanide (Gd and Dy) and actinide (Pa and U) atoms through the elastic total cross sections (TCSs) calculations. All the TCSs are found to be characterized by Ramsauer–Townsend minima, shape resonances, and dramatically sharp resonances manifesting stable ground and metastable anionic formation during the collisions. The ground states anionic binding energies (BEs) for the Cn (n = 24, 28, 44, 60, 70, and 82) match excellently the measured electron affinities (EAs). The thus benchmarked Regge pole methodology on the ground states anionic BEs for these fullerenes is then used to calculate the ground and the metastable elastic TCSs for the fullerenes, and the heavy atoms wherefrom their anionic BEs are extracted and compared with the measured EAs where they are available. Surprisingly, the C74 fullerene has the largest anionic ground state BE value among the investigated fullerenes in this paper and the ground state of the C140 anion has a large BE as well. Many of these fullerenes could be useful in nanocatalysis, sensor technology and organic solar cells through their ground and metastable anionic BEs. For the heavy atoms the extracted ground and metastable anionic BEs are compared with the measured and calculated EAs. These results particularly the ground states anionic BEs of the fullerenes and heavy atoms are expected to inspire and guide the long overdue experimental and theoretical explorations of electron attachment in low-energy electron scattering in these and related systems.

Graphical abstract

References

  1. 1.
    M.V. Ryzhkov, A.L. Ivanovskii, B. Delley, Nanosystems 5, 494 (2014) Google Scholar
  2. 2.
    J.P. Dognon, C. Clavaguera, P. Pyykko, J. Am. Chem. Soc. 131, 238 (2009) Google Scholar
  3. 3.
    M.V. Ryzhkov, A. L. Ivanovskii, B. Delley, Comp. Theor. Chem. 985, 46 (2012) Google Scholar
  4. 4.
    M.V. Ryzhkov, B. Delley, Comp. Theor. Chem. 1013, 70 (2013) Google Scholar
  5. 5.
    M. Diener, C.A. Smith, D.K. Veirs, Chem. Mater. 9, 1773 (1997) Google Scholar
  6. 6.
    P.W. Dunk, N.K. Kaiser, M. Mulet-Gas, A. Rodriguez-Fortea, J.M. Poblet, H. Shinohara, C.L. Hendrickson, A.G. Marshall, H.W. Kroto, J. Am. Chem. Soc. 134, 9380 (2012) Google Scholar
  7. 7.
    S. Vital, J. Marco-Martinez, S. Filippone, N. Martin, Chem. Commun. 53, 4842 (2017) Google Scholar
  8. 8.
    O.V. Boltalina, I.N. Ioffe, I.D. Sorokin, L.N. Sidorov, J. Phys. Chem. 101, 9561 (1997) Google Scholar
  9. 9.
    F.L. De La Puente, J.-F. Nierengarten, eds. Fullerenes: Principles and Applications (Nanoscience & Nanotechnology Series), 2nd edn. (Royal Society of Chemistry, 2011) Google Scholar
  10. 10.
    M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, Boston, MA, 1996) Google Scholar
  11. 11.
    E.M. Speller, Mater. Sci. Technol. 33, 924 (2017) Google Scholar
  12. 12.
    V.K. Voorat, L.S. Cederbaum, K.D. Jordan, J. Phys. Chem. Lett. 4, 848 (2013) Google Scholar
  13. 13.
    J.N. Bull, J.R.R. Verlet, Sci. Adv. 3, 1603106 (2017) ADSGoogle Scholar
  14. 14.
    B.C. Thomson, J.M.J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008) Google Scholar
  15. 15.
    Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mcculloch, C.S. Ha, M. Ree, Nat. Mater. 5, 197 (2006) ADSGoogle Scholar
  16. 16.
    A.V. Nenashev, M. Wiemer, A.V. Dvurechenski, L.V. Kulik, A.B. Pevtsov, F. Gebhard, M. Koch, S.D. Baranovskii, Phys. Rev. B 95, 104207 (2017) ADSGoogle Scholar
  17. 17.
    I. Constantinou, X. Yi, N.T. Shewmon, E.D. Klump, C. Peng, S. Garakyaraghi, C.K. Lo, J.R. Reynolds, F.N. Castellano, F. So, Adv. Energy Mater. 7, 1601947 (2017) Google Scholar
  18. 18.
    Z. Guo, Y. Wan, M. Yang, J. Snaider, K. Zhu, L. Huang, Science 356, 59 (2017) ADSGoogle Scholar
  19. 19.
    E.T. Hoke, I.T. Sachs-Quintana, M.T. Lloyd, I. Kauvar, W.R. Mateker, A.M. Nardes, C.H. Peters, N. Kopidakis, M.D. McGehee, Adv. Energy Mater. 2, 1351 (2012) Google Scholar
  20. 20.
    L.S. Bernstein, R.M. Shroll, D.K. Lynch, F.O. Clark, Astrophys. J. 836, 229 (2017) ADSGoogle Scholar
  21. 21.
    A. C. Brieva, R. Gredel, C. Jäge, F. Huisken, T. Henning, Astrophys. J. 826, 122 (2016) ADSGoogle Scholar
  22. 22.
    M.L. Tiago, P.R.C. Kent, R.Q. Hood, F.A. Reboredo, J. Chem. Phys. 129, 084311 (2008) ADSGoogle Scholar
  23. 23.
    P. Castellanos, O. Berné, Y. Sheffer, M.G. Wolfire, A.G. Tielens, Astrophys. J. 794, 83 (2014) ADSGoogle Scholar
  24. 24.
    O. Berné, N.L.J. Cox, G. Mulas, C. Joblin, Astron. Astrophys. 605, L1 (2017) ADSGoogle Scholar
  25. 25.
    J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings, J. Chem. Soc., Faraday Discuss. 138, 225 (2008) ADSGoogle Scholar
  26. 26.
    J.K. Edwards, B. Solsona, P. Landon, A.F. Carley, A. Herzing, M. Watanabe, C.J. Kiely, G.J. Hutchings, J. Mater. Chem. 15, 4595 (2005) Google Scholar
  27. 27.
    S.J. Freakley et al., Science 351, 959 (2016) ADSGoogle Scholar
  28. 28.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 43, 201001 (2010) ADSGoogle Scholar
  29. 29.
    A.Z. Msezane, Z. Felfli, A. Tesfamichael, K. Suggs, X.Q. Wang, Gold Bull. 45, 127 (2012) Google Scholar
  30. 30.
    A.Z. Msezane, Z. Felfli, D. Sokolovski, J. Phys. B 41, 105201 (2008) ADSGoogle Scholar
  31. 31.
    H. Hotop, W.C. Lineberger, J. Phys. Chem. Ref. Data 14, 731 (1985) ADSGoogle Scholar
  32. 32.
    T. Andersen, H.K. Haugen, H. Hotop, J. Phys. Chem. Ref. Data 28, 1511 (1999) ADSGoogle Scholar
  33. 33.
    W. Zheng, X. Li, S. Eustis, A. Grubisic, O. Thomas, H. De Clercq, K. Bowen, Chem. Phys. Lett. 444, 232 (2007) ADSGoogle Scholar
  34. 34.
    K.C. Chartkunchand et al., J. Phys.: Conf. Ser. 875, 022051 (2017) Google Scholar
  35. 35.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, J. Phys. B 45, 045201 (2012) ADSGoogle Scholar
  36. 36.
    J. Li, Z. Zhao, M. Andersson, X. Zhang, C. Chen, J. Phys. B 45, 165004 (2012) ADSGoogle Scholar
  37. 37.
    R.J.J. Zollweg, Chem. Phys. 50, 4251 (1969) ADSGoogle Scholar
  38. 38.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 79, 012714 (2009) ADSGoogle Scholar
  39. 39.
    S.-B. Cheng, A.W. Castleman, Sci. Rep. 5, 12414 (2015) ADSGoogle Scholar
  40. 40.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 78, 012510 (2008) ADSGoogle Scholar
  41. 41.
    V.T. Davis, J.S. Thompson, J. Phys. B 37, 1961 2004 Google Scholar
  42. 42.
    Z. Felfli, A.Z. Msezane, Unpublished (2013) Google Scholar
  43. 43.
    Z. Felfli, A.Z. Msezane, J. Phys.: Conf. Ser. 875, 062011 (2017) Google Scholar
  44. 44.
    S. Rothe et al., Nat. Commun. 4, 1835 (2013) ADSGoogle Scholar
  45. 45.
    K.D. Dinov, D.R. Beck, Phys. Rev. A 53, 4031 (1996) ADSGoogle Scholar
  46. 46.
    K.D. Dinov, D.R. Beck, Phys. Rev. A 52, 2632 (1995) ADSGoogle Scholar
  47. 47.
    S.C. Frautschi, in Regge Poles and S-Matrix Theory (Benjamin, New York, 1963), Chap. X Google Scholar
  48. 48.
    V. de Alfaro, T. Regge, Potential Scattering (Amsterdam, North-Holland, 1995) Google Scholar
  49. 49.
    K.W. Thylwe, Eur. Phys. J. D 66, 7 (2012) ADSGoogle Scholar
  50. 50.
    H.P. Mulholland, Proc. Camb. Philos. Soc. (Lond.) 24, 280 (1928) ADSGoogle Scholar
  51. 51.
    J.H. Macek, P.S. Krstic, S.Y. Ovchinnikov, Phys. Rev. Lett. 93, 183202 (2004) ADSGoogle Scholar
  52. 52.
    D. Sokolovski, Z. Felfli, S.Y. Ovchinnikov, J.H. Macek, A.Z. Msezane, Phys. Rev. A 76, 012705 (2007) ADSGoogle Scholar
  53. 53.
    A.S. Baltenkov, S.T. Manson, A.Z. Msezane, J. Phys. B 48, 185103 (2015) ADSGoogle Scholar
  54. 54.
    W. Jaskólski, Phys. Rep. 271, 1 (1996) ADSGoogle Scholar
  55. 55.
    V.K. Dolmatov, A.S. Baltenkov, J.P. Connerade, S.T. Manson, Rad. Phys. Chem. 70, 417 (2004) ADSGoogle Scholar
  56. 56.
    M.J. Pushka, R.M. Nieminen, Phys. Rev. A 47, 1181 (1993) ADSGoogle Scholar
  57. 57.
    A.S. Baltenkov, Phys. Lett. A 254, 203 (1999) ADSGoogle Scholar
  58. 58.
    M. Ya. Amusia, A.S. Baltenkov, B.G. Krakov, Phys. Lett. A 243, 99 (1998) ADSGoogle Scholar
  59. 59.
    E.M. Nascimento, F.V. Prudente, M.N. Guimarães, A.M. Maniero, J. Phys. B 44, 015003 (2011) ADSGoogle Scholar
  60. 60.
    M. Ya. Amusia, V.K. Dolmatov, L.V. Chernysheva, Phys. Rev. A 84, 063201 (2011) ADSGoogle Scholar
  61. 61.
    Z. Chen, A.Z. Msezane, Eur. Phys. J. D 69, 88 (2015) ADSGoogle Scholar
  62. 62.
    A.V. Korol, A.V. Solov’yov, J. Phys. B 43, 201004 (2010) ADSGoogle Scholar
  63. 63.
    C.Y. Lin, Y. Ho, J. Phys. B 45, 145001 (2012) ADSGoogle Scholar
  64. 64.
    V.K. Dolmatov, M.B. Cooper, M.E. Hunter, J. Phys. B 47, 115002 (2014) ADSGoogle Scholar
  65. 65.
    M.E. Madjet, H.S. Chakraborty, S.T. Manson, Phys. Rev. Lett. 99, 243003 (2007) ADSGoogle Scholar
  66. 66.
    M.E. Madjet, H.S. Chakraborty, J.M. Rost, S.T. Manson, J. Phys. B 41, 105101 (2008) ADSGoogle Scholar
  67. 67.
    O. Frank, J.M. Rost, Chem. Phys. Lett. 271, 367 (1997) ADSGoogle Scholar
  68. 68.
    A.L.D. Kilcoyne et al., Phys. Rev. Lett. 105, 213001 (2010) ADSGoogle Scholar
  69. 69.
    B. Li, G. O’Sullivan, C. Dong, J. Phys. B 46, 155203 (2013) ADSGoogle Scholar
  70. 70.
    V.K. Dolmatov, D.A. Keating, J. Phys.: Conf. Ser. 388, 022010 (2012) Google Scholar
  71. 71.
    T.W. Gorczyca, M.F. Hasoglu, S.T. Manson, Phys. Rev. A 86, 033204 (2012) ADSGoogle Scholar
  72. 72.
    R.A. Phaneuf et al., Phys. Rev. A 88, 053402 (2013) ADSGoogle Scholar
  73. 73.
    M. Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 89, 057401 (2014) ADSGoogle Scholar
  74. 74.
    V.K. Dolmatov, M.Ya. Amusia, L.V. Chernysheva, Phys. Rev. A 95, 012709 (2017) ADSGoogle Scholar
  75. 75.
    E.H. Lieb, B. Simon, Adv. Math. 23, 22 (1977) Google Scholar
  76. 76.
    E.H. Lieb, Rev. Mod. Phys. 48, 553 (1976) ADSGoogle Scholar
  77. 77.
    C.C. Tisdell, M. Holzer, Differ. Equ. Appl. 7, 27 (2015) MathSciNetGoogle Scholar
  78. 78.
    L.H. Thomas, Philos. Soc. 23, 542 (1928) Google Scholar
  79. 79.
    E. Fermi, Zeit. Phys. 48, 73 (1928) ADSGoogle Scholar
  80. 80.
    L.D. Landau, E.M. Lifshitz, in Quantum Mechanics (Non-relativistic Theory) (Butterworth-Heinemann, Oxford, 1999), Vol. 3, p. 277 Google Scholar
  81. 81.
    S. Esposito, Am. J. Phys. 70, 851 (2002) ADSGoogle Scholar
  82. 82.
    L.N. Epele, H. Fanchiotti, C.A. Garcá Canal, J.A. Ponciano, Phys. Rev. A 60, 280 (1999) ADSGoogle Scholar
  83. 83.
    Z. Felfli, S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, in Proceedings of the Third International Workshop on Contemporary Problems in Mathematical Physics, edited by J. Govaerts, M.N. Hounkonnou, A.Z. Msezane (World Scientific, Singapore, 2004), p. 218 Google Scholar
  84. 84.
    T. Tietz, Z. Naturforsch. 26a, 1054 (1971) ADSGoogle Scholar
  85. 85.
    B. Berezina, Yu.N. Demkov, Zh. Eksp. Teor. Fiz. 68, 848 (1975) Google Scholar
  86. 86.
    S. Belov, N.B. Avdonina, M. Marletta, A.Z. Msezane, S.N. Naboko, J. Phys. A 37, 6943 (2004) ADSMathSciNetGoogle Scholar
  87. 87.
    S. Belov, K.-E. Thylwe, M. Marletta, A.Z. Msezane, S. N. Naboko, J. Phys. A 43, 365301 (2010) MathSciNetGoogle Scholar
  88. 88.
    K.-E. Thylwe, P. McCabe, Eur. Phys. J. D 68, 323 (2014) ADSGoogle Scholar
  89. 89.
    N.B. Avdonina, S. Belov, Z. Felfli, A.Z. Msezane, S.N. Naboko, Phys. Rev. A 66, 022713 (2002) ADSMathSciNetGoogle Scholar
  90. 90.
    P. G. Burke, C. Tate, Comput. Phys. Commun. 1, 97 (1969) ADSGoogle Scholar
  91. 91.
    J.N.L. Connor, J. Chem. Soc. Faraday Trans. 86, 1627 (1990) Google Scholar
  92. 92.
    D.-L. Huang, P.D. Dau, H.T. Liu, L.-S. Wang, J. Chem. Phys. 140, 224315 (2014) ADSGoogle Scholar
  93. 93.
    C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Chem. Phys. Lett. 233, 52 (1995) ADSGoogle Scholar
  94. 94.
    X.B. Wang, H.K. Woo, X. Huang, M.M. Kappes, L.S. Wang, Phys. Rev. Lett. 96, 143002 (2006) ADSGoogle Scholar
  95. 95.
    O.V. Boltalina, L.N. Sidorov, E.V. Sukhanova, E.V. Skokan, Rapid Commun. Mass Spectrom. 7, 1009 (1993) Google Scholar
  96. 96.
    O.V. Boltalina, E.V. Dashkova, L.N. Sidorov, Chem. Phys. Lett. 256, 253 (1996) ADSGoogle Scholar
  97. 97.
    X.-B. Wang, H.-K. Woo, J. Yang, M.M. Kappes, L.S. Wang, J. Phys. Chem. C 111, 17684 (2007) Google Scholar
  98. 98.
    A.Z. Msezane, Z. Felfli, Chem. Phys. 503, 50 (2018) Google Scholar
  99. 99.
    A.Z. Msezane, Z. Felfli, V.R. Shaginyan, M.Ya. Amusia, Int. J. Curr. Adv. Res. 6, 8503 (2017) Google Scholar
  100. 100.
    W.R. Johnson, C. Guet, Phys. Rev. A 49, 1041 (1994) ADSGoogle Scholar
  101. 101.
    Z. Felfli, A.Z. Msezane, Eur. Phys. J. D 72, 78 (2018) ADSGoogle Scholar
  102. 102.
    C. Winstead, V. McKoy, Phys. Rev. A 73, 012711 (2006) ADSGoogle Scholar
  103. 103.
    R.R. Lucchese, F.A. Gianturco, N. Sanna, Chem. Phys. Lett. 305, 413 (1999) ADSGoogle Scholar
  104. 104.
    F.A. Gianturco, R.R. Lucchese, N. Sanna, J. Phys. B 32, 2181 (1999) ADSGoogle Scholar
  105. 105.
    F.A. Gianturco, R.R. Lucchese, J. Chem. Phys. 111, 6769 (1999) ADSGoogle Scholar
  106. 106.
    N. Ipatov, V.K. Ivanov, J.M. Pacheco, W. Ekardt, J. Phys. B 31, L5119 (1998) Google Scholar
  107. 107.
    H. Tanaka, L. Boesten, K. Onda, O. Ohashi, J. Phys. Soc. Jpn. 63, 485 (1994) ADSGoogle Scholar
  108. 108.
    O. Elhamidi, J. Pommier, R. Abouaf, J. Phys. B: At. Mol. Phys. 30, 4633 (1997) ADSGoogle Scholar
  109. 109.
    M. Lezius, P. Scheier, T.D. Märk, Chem. Phys. Lett. 203, 232 (1993) ADSGoogle Scholar
  110. 110.
    T. Jaffke, E. Illenberger, M. Lezius, S. Matejcik, D. Smith, T.D. Märk, Chem. Phys. Lett. 226, 213 (1994) ADSGoogle Scholar
  111. 111.
    J. Huang, H.S. Carman, R.N. Compton, J. Phys. Chem. 99, 1719 (1995) Google Scholar
  112. 112.
    L. Kronik, R. Fromherz, E. Ko, G. Ganteför, J.R. Chelikowsky, Nat. Mater. 1, 49 (2002) ADSGoogle Scholar
  113. 113.
    Z. Felfli, A.Z. Msezane, J. Phys.: Conf. Ser. 875, 052014 (2017) Google Scholar
  114. 114.
    Z. Felfli, A.Z. Msezane, D. Sokolovski, Phys. Rev. A 81, 042707 (2010) ADSGoogle Scholar
  115. 115.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 78, 012510 (2008) ADSGoogle Scholar
  116. 116.
    S.M. O’Malley, D.R. Beck, Phys. Rev. A 79, 012511 (2009) ADSGoogle Scholar
  117. 117.
    W.M. Haynes, Atomic, olecular, and optical physics; electron affinities, in CRC Handbook of Chemistry and Physics, 92nd edn. (CRC Press, Boca Raton, FL, 2011–2012), Sect. 10 Google Scholar
  118. 118.
    V.G. Zakrzewski, O. Dolgounitcheva, J.V. Ortiz, J. Phys. Chem. A 118, 7424 (2014) Google Scholar
  119. 119.
    Y. Achiba, M. Kohno, M. Ohara, S. Suzuki, H. Shiromaru, J. Electron Spectrosc. Relat. Phenom. 142, 231 (2005) Google Scholar
  120. 120.
    S. Yang, K.J. Taylor, M.J. Craycraft, J. Conceicao, C.L. Pettiette, O. Cherhnovsky, R.E. Smalley, Chem. Phys. Lett. 144, 431 (1989) ADSGoogle Scholar
  121. 121.
    A. Munoz-Castro, R. Bruce King, J. Comput. Chem. 38, 44 (2017) Google Scholar
  122. 122.
    K. Zhao, R.M. Pitzer, J. Phys. Chem. 100, 4798 (1996) Google Scholar
  123. 123.
    H. Kietzmann, R. Rochow, G. Ganteför, W. Eberhardt, K. Vietze, G. Seifert, P.W. Fowler, Phys. Rev. Lett. 81, 5378 (1998) ADSGoogle Scholar
  124. 124.
    S. Nagase, K. Kabayashi, Chem. Phys. Lett. 228, 106 (1999) ADSGoogle Scholar
  125. 125.
    X.B. Wang, H.K. Woo, L.S. Wang, J. Chem. Phys. 123, 051106 (2005) ADSGoogle Scholar
  126. 126.
    R.J. Tarento, P. Joyes, Z. Phys. D 37, 165 (1996) ADSGoogle Scholar
  127. 127.
    L.-S. Wang, J.J. Conceicao, C.M. Jin, R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991) ADSGoogle Scholar
  128. 128.
    X.-B. Wang, C.-F. Ding, L.-S. Wang, J. Chem. Phys. 110, 8217 (1999) ADSGoogle Scholar
  129. 129.
    B. Palpant, A. Otake, F. Hayakawa, Y. Negishi, G.H. Lee, A. Nakajima, K. Kaya, Phys. Rev. B 60, 4509 (1999) ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics and CTSPSClark Atlanta UniversityAtlantaUSA

Personalised recommendations