Excitation of strongly interacting moving Rydberg atoms by photon recoil momentum

  • Razmik G. UnanyanEmail author
Regular Article


Based on the fact that an ensemble of moving Rydberg atoms in two counterpropagating laser beams in the limit of complete dipole blocking is isomorphic to a Jaynes–Cummings model, a scheme for robust and efficient excitation of atomic Rydberg states is proposed. It is shown that the Doppler frequency shifts play an important role in atomic population transfer processes. The suggested method can be employed to detect the symmetric entangled states and paves the way to preparing entangled states with a single excited atom in a Rydberg state. It is shown that this process is robust with respect to parameter fluctuations, such as the laser pulse area, the relative spatial offset (the delay) of the laser beams and the number of atoms.

Graphical abstract


Quantum Information 


  1. 1.
    D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Cote, M.D. Lukin, Phys. Rev. Lett. 85, 2208 (2000) ADSCrossRefGoogle Scholar
  2. 2.
    M.D. Lukin, M. Fleischhauer, R. Cote, L.M. Duan, D. Jaksch, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 87, 037901 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    M. Saffman, T.G. Walker, K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010) ADSCrossRefGoogle Scholar
  4. 4.
    R. Raussendorf, D.E. Browne, H.J. Briegel, Phys. Rev. A 68, 022312 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Rev. Mod. Phys. 89, 015006 (2017) ADSCrossRefGoogle Scholar
  6. 6.
    N.V. Vitanov, M. Fleischhauer, B.W. Shore, K. Bergmann, Adv. At. Mol. Opt. Phys. 46, 55 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    B.W. Shore, Acta Phys. Slovaca 63, 361 (2013) Google Scholar
  8. 8.
    R.G. Unanyan, M. Fleischhauer, Phys. Rev. A 66, 032109 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    D. Møller, L.B. Madsen, K. Mølmer, Phys. Rev. Lett. 100, 170504 (2008) CrossRefGoogle Scholar
  10. 10.
    T. Opatrný, K. Mølmer, Phys. Rev. A 86, 023845 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    T. Keating, Ch.H. Baldwin, Y.Y. Jau, J. Lee, G.W. Biedermann, I.H. Deutsch, Phys. Rev. Lett. 117, 213601 (2016) ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E. Jaynes, F. Cummings, Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  13. 13.
    B.W. Shore, P.L. Knight, J. Mod. Opt. 40, 1195 (1993) ADSCrossRefGoogle Scholar
  14. 14.
    T.M. Weber, M. Hoening, T. Niederpruem, T. Manthey, O. Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, H. Ott, Nat. Phys. 11, 157 (2015) CrossRefGoogle Scholar
  15. 15.
    L. Beguin, A. Vernier, R. Chicireanu, T. Lahaye, A. Browaeys, Phys. Rev. Lett. 110, 263201 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    M. Fleischhauer, A. Imamoglu, J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005) ADSCrossRefGoogle Scholar
  17. 17.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1980) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich Physik, Technische Universität KaiserslauternKaiserslauternGermany

Personalised recommendations