Advertisement

Influence of Al, Fe or Cu vapour on thermophysical properties of CO2 plasmas

  • Yang LiuEmail author
  • Xiaohua Wang
  • Linlin Zhong
  • Aijun Yang
  • Mingzhe Rong
  • Junhui Wu
Regular Article

Abstract

CO2 has been adopted by gas circuit breakers serving as an arc extinguishing gas and by arc welding as a shielding gas. These applications are usually accomplished by the erosion of metal constituting the device, which may modify arc properties. Therefore, this paper investigates the impact of metals (Al, Fe, Cu) on equilibrium compositions, thermodynamic (mass density, specific enthalpy and specific heat) and transport properties (thermal conductivity, viscosity and electrical conductivity) for CO2 thermal plasmas, which are obtained using the Chapman–Enskog theory and the Gibbs free energy minimization method. Mass proportion is adopted for all mixtures. The presence of metals, particularly Al, can greatly enhance the electrical conductivity for CO2, especially at low temperature even for a small concentration like 1%. Fe and Cu reveal quite close evolutions of electrical conductivity and present similar effects on electrical conductivity of CO2 under the same mixing ratio. However, for viscosity and thermal conductivity of CO2, the attenuating effects of metals, particularly Fe and Cu, are quite marginal with a concentration of 10%.

Graphical abstract

Keywords

Plasma Physics 

References

  1. 1.
    M.I. Boulos, P. Fauchais, E. Pfender, Thermal plasmas: fundamentals and applications (Springer Science +Business Media, 2013) Google Scholar
  2. 2.
    L. Pershin, L. Chen, J. Mostaghimi, J. Therm. Spray Tech. 17, 608 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    M. Tanaka, J.J. Lowke, J. Phys. D: Appl. Phys. 40, R1 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    B. Swierczynski, J.J. Gonzalez, P. Teulet, P. Freton, A. Gleizes, J. Phys. D: Appl. Phys. 37, 595 (2004) ADSCrossRefGoogle Scholar
  5. 5.
    T. Uchii, A. Majima, T. Koshizuka, H. Kawano, in Proceedings of the 18th International Conference on Gas Discharges and Their Applications (GD2010) (2010), p. 78 Google Scholar
  6. 6.
    LTA 72D1 CO2 high voltage circuit breaker. https://doi.org/www.ABB.com/highvoltage
  7. 7.
    A.B. Murphy, J. Phys. D: Appl. Phys. 43, 434001 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Gonzalez, M. Bouaziz, M. Razafinimanana, A. Gleizes, Plasma Sources Sci. Technol. 6, 20 (1997) ADSCrossRefGoogle Scholar
  9. 9.
    M. Schnick, U. Füssel, M. Hertel, A. Spille-Kohoff, A.B. Murphy, J. Phys. D: Appl. Phys. 43, 022001 (2010) ADSCrossRefGoogle Scholar
  10. 10.
    J.L. Zhang, J.D. Yan, M.T. Fang, IEEE Trans. Plasma Sci. 32, 1352 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    V. Liau, B. Lee, K. Song, K. Park, J. Phys. D: Appl. Phys. 39, 2114 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    J.C. Lee, Y.J. Kim, Vacuum 81, 875 (2007) ADSCrossRefGoogle Scholar
  13. 13.
    A. Gleizes, J.J. Gonzalez, P. Freton, J. Phys. D: Appl. Phys. 38, R153 (2005) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Yokomizu, R. Ochiai, T. Matsumura, J. Phys. D: Appl. Phys. 42, 215204 (2009) ADSCrossRefGoogle Scholar
  15. 15.
    A. Yang, Y. Liu, B. Sun, X. Wang, Y. Cressault, L. Zhong, M. Rong, Y. Wu, C. Niu, J. Phys. D: Appl. Phys. 48, 495202 (2015) CrossRefGoogle Scholar
  16. 16.
    W. Wang, W. Wang, M. Rong, Y. Wu, J.D. Yan, J. Phys. D: Appl. Phys. 47, 255201 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    B. Chervy, A. Gleizes, M. Razafinimanana, J. Phys. D: Appl. Phys. 27, 1193 (1994) ADSCrossRefGoogle Scholar
  18. 18.
    K.C. Paul, T. Sakuta, T. Takashima, M. Ishikawa, J. Phys. D: Appl. Phys. 30, 103 (1997) ADSCrossRefGoogle Scholar
  19. 19.
    M. Rong, L. Zhong, Y. Cressault, A. Gleizes, X. Wang, F. Chen, H. Zheng, J. Phys. D: Appl. Phys. 47, 495202 (2014) CrossRefGoogle Scholar
  20. 20.
    Y. Wu, Z. Chen, F. Yang, Y. Cressault, A.B. Murphy, A. Guo, Z. Liu, M. Rong, H. Sun, J. Phys. D: Appl. Phys. 48, 415205 (2015) ADSCrossRefGoogle Scholar
  21. 21.
    Y. Tanaka, Y. Yokomizu, M. Kato, T. Matsumura, K. Shimizu, S. Takayama, T. Okada, in The 4th International Thermal Plasma Processes Conference, Athens, Greece (1996), p. 15 Google Scholar
  22. 22.
    Y. Cressault, R. Hannachi, P. Teulet, A. Gleizes, J.P. Gonnet, J.Y. Battandier, Plasma Sources Sci. Technol. 17, 035016 (2008) ADSCrossRefGoogle Scholar
  23. 23.
    Y. Cressault, A. Gleizes, J. Phys. D: Appl. Phys. 43, 434006 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    Y. Cressault, A. Gleizes, G. Riquel, J. Phys. D: Appl. Phys. 45, 265202 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    Y. Cressault, A. Gleizes, J. Phys. D: Appl. Phys. 46, 415206 (2013) CrossRefGoogle Scholar
  26. 26.
    Y. Cressault, A.B. Murphy, P. Teulet, A. Gleizes, M. Schnick, J. Phys. D: Appl. Phys. 46, 415207 (2013) CrossRefGoogle Scholar
  27. 27.
    T. Hoffmann, G. Baldea, U. Riedel, Proc. Combust. Inst. 32,3207 (2009) CrossRefGoogle Scholar
  28. 28.
    M. Chase, J.C. Davies, NIST-JANAF thermochemical tables, 4th edn. (American Institute of Physics for the NationalInstitute of Standards and Technology, New York, 1998) Google Scholar
  29. 29.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular theory of gases and liquids, 2nd edn. (John Wiley & Sons, Inc., New York, 1964) Google Scholar
  30. 30.
    R.S. Devoto, Phys. Fluids 10, 2105 (1967) ADSCrossRefGoogle Scholar
  31. 31.
    R.S. Devoto, Phys. Fluids 10, 2704 (1967) ADSCrossRefGoogle Scholar
  32. 32.
    J. Vanderslice, S. Weissman, E. Mason, R. Fallon, Phys. Fluids 5, 155 (1962) ADSGoogle Scholar
  33. 33.
    J.N. Butler, R.S. Brokaw, J. Chem. Phys. 26, 1636 (1957) ADSCrossRefGoogle Scholar
  34. 34.
    A. Yang, Y. Liu, L. Zhong, X. Wang, C. Niu, M. Rong, G. Han, Y. Zhang, Y. Lu, Y. Wu, Plasma Chem. Plasma Process. 36, 1141 2016 CrossRefGoogle Scholar
  35. 35.
    A. Laricchiuta, G. Colonna, D. Bruno, R. Celiberto, C. Gorse, F. Pirani, M. Capitelli, Chem. Phys. Lett. 445, 133 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    M. Capitelli, D. Cappelletti, G. Colonna, C. Gorse, A. Laricchiuta, G. Liuti, S. Longo, F. Pirani, Chem. Phys. 338, 62 (2007) CrossRefGoogle Scholar
  37. 37.
    X. Wang, L. Zhong, Y. Cressault, A. Gleizes, M. Rong, J. Phys. D: Appl. Phys. 47, 495201 (2014) CrossRefGoogle Scholar
  38. 38.
    NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, 2013. https://doi.org/cccbdb.nist.gov/
  39. 39.
    P. André, W. Bussiére, D. Rochette, Plasma Chem. Plasma Process. 27, 381 (2007) CrossRefGoogle Scholar
  40. 40.
    A.B. Murphy, C.J Arundell, Plasma Chem. Plasma Process. 14, 451 (1994) CrossRefGoogle Scholar
  41. 41.
    F.B.M. Copeland, D.S.F. Crothers, At. Data Nucl. Data Tables 65, 273 (1997) ADSCrossRefGoogle Scholar
  42. 42.
    J.A. Rutherford, D.A. Vroom, J. Chem. Phys. 61, 2514 (1974) ADSCrossRefGoogle Scholar
  43. 43.
    A. Yevseyev, A. Radtsig, B. Smirnov, J. Phys. B: At. Mol. Phys. 15, 4437 (1982) ADSCrossRefGoogle Scholar
  44. 44.
    D. Rapp, W.E. Francis, J. Chem. Phys. 37, 2631 (1962) ADSCrossRefGoogle Scholar
  45. 45.
    E.A. Mason, R.J. Munn, F.J. Smith, Phys. Fluids 10, 1827 (1967) ADSCrossRefGoogle Scholar
  46. 46.
    A.B. Murphy, E. Tam, J. Phys. D: Appl. Phys. 47, 295202 (2014) CrossRefGoogle Scholar
  47. 47.
    A.B. Murphy, Plasma Chem. Plasma Process. 15, 279 (1995) CrossRefGoogle Scholar
  48. 48.
    R.S. Devoto, Phys. Fluids 16, 616 (1973) ADSCrossRefGoogle Scholar
  49. 49.
    C.R. Wilke, J. Chem. Phys. 18, 517 (1950) ADSCrossRefGoogle Scholar
  50. 50.
    J.T. Vanderslice, Stanley Weissman, E.A. Mason, R.J. Fallon, Phys. Fluids 5 (1962) Google Scholar
  51. 51.
    A. Gleizes, Y. Cressault, P. Teulet, Plasma Sources Sci. Technol. 19 2010 Google Scholar
  52. 52.
    G.E. Palmer, M.J. Wright, J. Thermophys. Heat Tr. 17, 232 (2003) Google Scholar
  53. 53.
    A. Murphy, J. Phys. D: Appl. Phys. 29, 1922 (1996) ADSCrossRefGoogle Scholar
  54. 54.
    P.C. Stoller, M. Seeger, A.A. Iordanidis, G.V. Naidis, IEEE Trans. Plasma Sci. 41, 2359 (2013) CrossRefGoogle Scholar
  55. 55.
    M. Fang, Q. Zhuang, X. Guo, J. Phys. D: Appl. Phys. 27, 74 (1994) ADSCrossRefGoogle Scholar
  56. 56.
    J. Liu, Q. Zhang1, J.D. Yan, J. Zhong, M.T.C. Fang, J. Phys. D: Appl. Phys. 49, 435201 (2016) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yang Liu
    • 1
    Email author
  • Xiaohua Wang
    • 1
  • Linlin Zhong
    • 2
  • Aijun Yang
    • 1
  • Mingzhe Rong
    • 1
  • Junhui Wu
    • 3
  1. 1.State Key Laboratory of Electrical Insulation and Power EquipmentXi’an Jiaotong UniversityXi’an, Shaanxi ProvinceP.R. China
  2. 2.School of Electrical EngineeringSoutheast UniversityNanjingP.R. China
  3. 3.Pinggao Group Co. Ltd.Pingdingshan, Henan ProvinceP.R. China

Personalised recommendations