The exact solution of a four-body Coulomb problem

Regular Article
  • 34 Downloads
Part of the following topical collections:
  1. Topical Issue: Low Energy Positron and Electron Interactions

Abstract

The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps–Ps, Ps–Mu, Ps–H, Ps–D, Ps–T, Mu–Mu, Mu–H, Mu–D, Mu–T, H–H, H–D, H–T, D–D, D–T, T–T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)–H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed.

Graphical abstract

References

  1. 1.
    D.P. Hamilton, Nature 533, 187 (2016) ADSCrossRefGoogle Scholar
  2. 2.
    M. Schulz, R. Moshammer, D. Fischer, H. Kolimas, D.H. Madison, S. Jones, J. Ullrich, Nature 422, 48 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    H. Ray, Pramana 83, 907 (2014) ADSCrossRefGoogle Scholar
  4. 4.
    H. Ray, R. De, J. Phys. B Conf. Ser. 618, 012008 (2015) CrossRefGoogle Scholar
  5. 5.
    H. Ray, A. De, J. Phys. B Conf. Ser. 388, 122002 (2012) CrossRefGoogle Scholar
  6. 6.
    H. Ray, Pramana 86, 1077 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    H. Ray, Pramana 87, 8 (2016) ADSCrossRefGoogle Scholar
  8. 8.
    H. Ray, A. De, D. Ray, in The effect of long-range forces in Ps and H collision (invited 1st issue) (New Alipore College, Kolkata, India, 2016), Vol. 1 Google Scholar
  9. 9.
    H. Ray, A.S. Ghosh, J. Phys. B 29, 5505 (1996) ADSCrossRefGoogle Scholar
  10. 10.
    H. Ray, A.S. Ghosh, J. Phys. B 30, 3745 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    A.S. Ghosh, N.C. Sil, P. Mondal, Phys. Rep. 87, 313 (1982) ADSCrossRefGoogle Scholar
  12. 12.
    P.A. Fraser, Proc. R. Soc. B 78, 329 (1961) ADSCrossRefGoogle Scholar
  13. 13.
    P.A. Fraser, J. Phys. B. 1, 1006 (1968) ADSCrossRefGoogle Scholar
  14. 14.
    H. Ray, in GSFC NASA Conference Proceeding on Atomic and Molecular Physics (NASA/CP-2006-214146), edited by A.K. Bhatia (2007), p. 121 Google Scholar
  15. 15.
    H. Ray, A.S. Ghosh, J. Phys. B 31, 4427 (1998) ADSCrossRefGoogle Scholar
  16. 16.
    H. Ray, J. Phys. B 32, 5681 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    H. Ray, J. Phys. B 33, 4285 (2000) ADSCrossRefGoogle Scholar
  18. 18.
    H. Ray, J. Phys. B 35, 2625 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    H. Ray, Phys. Rev. A 73, 064501 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Barker, B.H. Bransden, J. Phys. B 1, 1109 (1968) ADSCrossRefGoogle Scholar
  21. 21.
    M.I. Barker, B.H. Bransden, J. Phys. B 2, 730 (1969) ADSCrossRefGoogle Scholar
  22. 22.
    W.J. Moore, in Physical chemistry, 2nd edn. (Prentice-Hall, Englewood Cliffs, N.J., 1955), Chap. 11, p. 298 Google Scholar
  23. 23.
    I.A. Ivanov, J. Mitroy, K. Varga, Phys. Rev. A 65, 022704 (2002) ADSCrossRefGoogle Scholar
  24. 24.
    A. Sen, S. Chakraborty, A.S. Ghosh, Europhys. Lett. 76, 582 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    S.J. Brawley, S. Amritage, J. Beale, D.E. Leslie, A.I. Williams, G. Laricchia, Science 330, 789 (2010) ADSCrossRefGoogle Scholar
  26. 26.
    J. Mitroy, M.W.J. Bromley, Phys. Rev. A 68, 035201 (2003) ADSCrossRefGoogle Scholar
  27. 27.
    M.J. Jamieson, A. Dalgarno, J.N. Yukich, Phys. Rev. A 46, 6956 (1992) ADSCrossRefGoogle Scholar
  28. 28.
    M.J. Jamieson, A. Dalgarno, J. Phys. B 31, L219 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    C.J. Williams, P.S. Julienne, Phys. Rev. A 47, 1524 (1995) ADSCrossRefGoogle Scholar
  30. 30.
    N. Koyama, J.C. Baird, J. Phys. Soc. Jpn. 55, 801 (1986) ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Drachman, GSFC, NASA, private communications Google Scholar
  32. 32.
    J. Weiner, V.S. Bagnato, S. Zillo, P.S. Julienne, Rev. Mod. Phys. 71, 1 (1999) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Study Center, S-1/407/6KolkataIndia
  2. 2.Department of PhysicsNew Alipore CollegeKolkataIndia
  3. 3.Science Department, National Institute of TTT and ResearchKolkataIndia

Personalised recommendations