The European Physical Journal D

, Volume 65, Issue 1–2, pp 243–250 | Cite as

Optimal trapping wavelengths of Cs2 molecules in an optical lattice

  • R. Vexiau
  • N. Bouloufa
  • M. Aymar
  • J. G. Danzl
  • M. J. Mark
  • H. C. Nägerl
  • O. DulieuEmail author
Regular Article Cooling and trapping methods


The present paper aims at finding optimal parameters for trapping of Cs2 molecules in optical lattices, with the perspective of creating a quantum degenerate gas of ground-state molecules. We have calculated dynamic polarizabilities of Cs2 molecules subject to an oscillating electric field, using accurate potential curves and electronic transition dipole moments. We show that for some particular wavelengths of the optical lattice, called “magic wavelengths”, the polarizability of the ground-state molecules is equal to the one of a Feshbach molecule. As the creation of the sample of ground-state molecules relies on an adiabatic population transfer from weakly-bound molecules created on a Feshbach resonance, such a coincidence ensures that both the initial and final states are favorably trapped by the lattice light, allowing optimized transfer in agreement with the experimental observation.


Optical Lattice Potential Energy Curve Transition Dipole Moment Feshbach Resonance Dynamic Polarizability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.D. Carr, J. Ye, New J. Phys. 11, 055009 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    R.V. Krems, Phys. Chem. Chem. Phys. 10, 4079 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Jaksch, V. Venturi, J.I. Cirac, C.J. Williams, P. Zoller, Phys. Rev. Lett. 89, 040402 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    A. Micheli, G.K. Brennen, P. Zoller, Nature Phys. 2, 341 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    A. Micheli, G. Pupillo, H.P. Büchler, P. Zoller, Phys. Rev. A 76, 043604 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    D. DeMille, Phys. Rev. Lett. 88, 067901 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.F. Yelin, K. Kirby, R. Côté, Phys. Rev. A 74, 050301 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    E. Charron, P. Milman, A. Keller, O. Atabek, Phys. Rev. A 75, 033414 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Danzl, E. Haller, M. Gustavsson, M.J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch, H.C. Nägerl, Science 321, 1062 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J.M. Hutson, H.C. Nägerl, Nature Phys. 6, 265 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    A.D. Lercher, T. Takekoshi, M. Debatin, B. Schuster, R. Rameshan, F. Ferlaino, R. Grimm, H.C. Nägerl, Eur. Phys. J. D (2011), DOI: 10.1140/epjd/e2011-20015-6ADSCrossRefGoogle Scholar
  12. 12.
    J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.C. Nägerl, R. Grimm, Science 301, 1510 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Nature 424, 47 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    K. Bergmann, H. Theuer, B.W. Shore, Rev. Mod. Phys. 70, 1003 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    T.I.H. Katori, M. Kuwata-Gonokami, J. Phys. Soc. Jpn 8, 2479 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J. Ye, H.J. Kimble, H. Katori, Science 320, 1734 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 101, 133005 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kotochigova, D. DeMille, Phys. Rev. A 82, 063421 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    M. Aymar, C. Amiot, N. Bouloufa, J. Deiglmayr, O. Dulieu, in preparation (2011)Google Scholar
  20. 20.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    M. Aymar, O. Dulieu, J. Chem. Phys. 122, 204302 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. Amiot, O. Dulieu, R.F. Gutterres, F. Masnou-Seeuws, Phys. Rev. A 66, 052506 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    U. Diemer, J. Gress, W. Demtröder, Chem. Phys. Lett. 178, 330 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    J. Verges, C. Amiot, J. Mol. Spectrosc. 126, 393 (1987)ADSCrossRefGoogle Scholar
  25. 25.
    F. Xie, D. Li, L. Tyree, L. Li, V.B. Sovkov, V.S. Ivanov, S. Magnier, A.M. Lyyra, J. Chem. Phys. 128, 204313 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Mark et al., Appl. Phys. B 95, 219 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Ritsch, R. Hart, H.C. Nägerl, Faraday Discuss. 142, 283 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    N. Spies, Ph.D. thesis, Universität Kaiserslautern, 1989Google Scholar
  29. 29.
    J. Bai et al., Phys. Rev. A 83, 032514 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    M. Marinescu, A. Dalgarno, Phys. Rev. A 52, 311 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    V. Kokoouline, O. Dulieu, R. Kosloff, F. Masnou-Seeuws, J. Chem. Phys. 110, 9865 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    A. Derevianko, S.G. Porsev, J.F. Babb, At. Data Nucl. Data Tables 96, 323 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    E. Iskrenova-Tchoukova, M. Safronova, U. Safronova, Comput. Methods Sci. Eng. 7, 521 (2008)Google Scholar
  34. 34.
    J. Deiglmayr, M. Aymar, R. Wester, M. Weidemüller, O. Dulieu, J. Chem. Phys. 129, 064309 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    J. Deiglmayr, A. Grochola, M. Repp, O. Dulieu, R. Wester, M. Weidemüller, Phys. Rev. A 82, 032503 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    A. Gerdes, O. Dulieu, H. Knöckel, E. Tiemann, Eur. Phys. J. D (2011), DOI: 10.1140/epjd/e2011-20048-9ADSCrossRefGoogle Scholar
  37. 37.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, R. Hart, A. Liem, H. Zellmer, H.C. Nägerl, New J. Phys. 11, 055036 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Science 321, 232 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, P. Pillet, Phys. Rev. A 79, 021402 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    F. Xie, V.B. Sovkov, A.M. Lyyra, D. Li, S. Ingram, J. Bai, V.S. Ivanov, S. Magnier, L. Li, J. Chem. Phys. 130, 051102 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Vexiau
    • 1
  • N. Bouloufa
    • 1
  • M. Aymar
    • 1
  • J. G. Danzl
    • 2
  • M. J. Mark
    • 2
  • H. C. Nägerl
    • 2
  • O. Dulieu
    • 1
    Email author
  1. 1.Laboratoire Aimé Cotton, CNRS, Bât. 505Université Paris-SudOrsay CedexFrance
  2. 2.Institut für Experimentalphysik und Zentrum für QuantenphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations