The European Physical Journal D

, Volume 65, Issue 1–2, pp 251–255 | Cite as

Magneto-optical trapping of neutral mercury

  • P. Villwock
  • S. Siol
  • Th. WaltherEmail author
Regular Article Cooling and trapping methods


We report on the cooling of neutral mercury in a magneto-optical trap utilizing the spin forbidden 1S03P1 transition at 253.7 nm. We trapped two Hg isotopes, i.e. the bosonic 202Hg and the fermionic 199Hg isotope, respectively. The temperature of the cold atom cloud was determined to be approximately 300 μK using a modified TOF-method. It is currently limited by the quality of the laser lock. Trapped neutral Hg has many interesting avenues such as a time standard and high precision measurements. Here, we discuss the possibilities of photo-association spectroscopy and the generation of ultra-cold Hg2 dimers.


High Precision Measurement Trap Atom Vibrational Quantum Number 199Hg Optical Lattice Clock 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hachisu, K. Miyagishi, S.G. Porsev, A. Derevianko, V.D. Ovsiannikov, V.G. Pal’chikov, M. Takamoto, H. Katori, Phys. Rev. Lett. 100, 053001 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Th. Walther, J. Mod. Opt. 54, 2523 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M. Petersen, J. Millo, D.V. Magalhaes, C. Mandache, S.T. Dawkins, R. Chicireanu, Y. Lecoq, O. Acef, G. Santarelli, A. Clairon, S. Bize, Magneto-optical trap of neutral mercury for an optical lattice clock, IEEE International Frequency Control Symposium (2008), pp. 451 − 454Google Scholar
  4. 4.
    M.C. Bigeon, J. Phys. 28, 51 (1967)CrossRefGoogle Scholar
  5. 5.
    M. Petersen, D. Magalhaes, C. Mandache, O. Acef, A. Clairon, Towards an Optical Lattice Clock Based on Neutral Mercury, IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum (2007), pp. 649 − 654Google Scholar
  6. 6.
    E. Angstmann, V. Dzuba, V. Flambaum, Phys. Rev. A 70, 1 (2004)Google Scholar
  7. 7.
    S.G. Karshenboim, Gen. Rel. Grav. 38, 159 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    W. Griffith, M. Swallows, T. Loftus, M. Romalis, B. Heckel, E. Fortson, Phys. Rev. Lett. 102, 1 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Latha, D. Angom, B. Das, D. Mukherjee, Phys. Rev. Lett. 103, 1 (2009)Google Scholar
  10. 10.
    H. Katori, M. Takamoto, V.G. Pal’chikov, V.D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    L. Yi, S. Mejri, J.J. McFerran, Y. Le Coq, S. Bize, Phys. Rev. Lett. 106, 073005 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.D. van Zee, S.C. Blankespoor, T.S. Zwier, J. Chem. Phys. 88, 4650 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    J. Koperski, J.B. Atkinson, L. Krause, Chem. Phys. Lett. 219, 161 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    E.S. Fry, Th. Walther, S. Li, Phys. Rev. A 52, 4381 (1995)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Daley, M. Boyd, J. Ye, P. Zoller, Phys. Rev. Lett. 101, 1 (2008)CrossRefGoogle Scholar
  16. 16.
    E.C. Benck, J.E. Lawler, J.T. Dakin, J. Opt. Soc. Am. B 6, 11 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, T.W. Hänsch, Opt. Lett. 32, 955 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)ADSCrossRefGoogle Scholar
  19. 19.
    R.V. Pound, Rev. Sci. Instrum. 17, 490 (1946)ADSCrossRefGoogle Scholar
  20. 20.
    E.D. Black, Am. J. Phys. 69, 79 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    K.I. Lee, J.A. Kim, H.R. Noh, W. Jhe, Opt. Lett. 21, 1177 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    W.G. Schweitzer Jr., J. Opt. Soc. Am. 53, 1055 (1963)ADSCrossRefGoogle Scholar
  23. 23.
    A. Seifert, M. Sinther, Th. Walther, E.S. Fry, Appl. Opt. 45, 7908 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Inst. for Applied PhysicsTU DarmstadtDarmstadtGermany

Personalised recommendations