The European Physical Journal D

, Volume 65, Issue 1–2, pp 279–284 | Cite as

Interaction-enhanced double resonance in cold gases

  • A. I. Safonov
  • I. I. Safonova
  • I. S. Yasnikov
Regular Article Cooling and trapping methods


A new type of double-resonance spectroscopy of a quantum gas based on interaction-induced frequency modulation of a probe transition has been considered. Interstate interaction of multilevel atoms causes a coherence-dependent collisional shift of the transition between the atomic states |1〉 and |2〉 due to a nonzero population of the state |3〉. Thus, the frequency of the probe transition |1〉−|2〉 experiences oscillations associated with the Rabi oscillations between the states |1〉 and |3〉 under continuous excitation of the drive resonance |1〉−|3〉. Such a dynamic frequency shift leads to a change in the electromagnetic absorption at the probe frequency and, consequently, greatly enhances the sensitivity of double-resonance spectroscopy as compared to traditional “hole burning”, which is solely due to a decrease in the population of the initial state |1〉. In particular, it has been shown that the resonance linewidth is determined by the magnitude of the contact shift and the amplitude of the drive field and does not depend on the static field gradient. The calculated line shape and width agree with the low-temperature electron-nuclear double-resonance spectra of two-dimensional atomic hydrogen.


Double Resonance Probe Frequency Rabi Oscillation Contact Shift Absorption Amplitude 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Gupta et al., Science 300, 1723 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Regal, D.S. Jin, Phys. Rev. Lett. 90, 230404 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    G. Baym, C.J. Pethick, Z. Yu, M.W. Zwierlein, Phys. Rev. Lett. 99, 190407 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A.I. Safonov, I.I. Safonova, I.S. Yasnikov, J. Low Temp. Phys. 162, 127 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    G.K. Campbell et al., Science 324, 360 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    K. Gibble, Phys. Rev. Lett. 103, 113202 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Ahokas, J. Järvinen, S. Vasiliev, Phys. Rev. Lett. 98, 043004 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    J. Ahokas, J. Järvinen, S. Vasiliev, J. Low Temp. Phys. 150, 577 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    B.D. Agap’ev, M.B. Gornyi, B.G. Matisov, Yu.V. Rozhdestvenskii, Sov. Phys. Uspekhi 36, 763 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    A.I. Safonov, I.I. Safonova, I.I. Lukashevich, JETP Lett. 87, 23 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    J. Ahokas, J. Järvinen, G.V. Shlyapnikov, S. Vasiliev, Phys. Rev. Lett. 101, 263003 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    D.M. Harber, H.J. Lewandowski, J.M. McGuirk, E. Cornell, Phys. Rev. A 66, 053616 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Zwierlein, Z. Hadzibabic, S. Gupta, W. Ketterle, Phys. Rev. Lett. 91, 250404 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S. Vasiliev, private communications (2011)Google Scholar
  15. 15.
    A.I. Safonov, I.I. Safonova, I.S. Yasnikov, Phys. Rev. Lett. 104, 099301 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    C.J. Williams, P.S. Julienne, Phys. Rev. A 47, 1524 (1993)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Jamieson, B. Zygelman, Phys. Rev. A 64, 032703 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    S. Chakraborty et al., Eur. Phys. J. D 45, 261 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. I. Safonov
    • 1
  • I. I. Safonova
    • 1
  • I. S. Yasnikov
    • 2
  1. 1.National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Togliatti State UniversityTogliattiRussia

Personalised recommendations