Advertisement

The European Physical Journal D

, Volume 65, Issue 1–2, pp 55–65 | Cite as

Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: elastic versus inelastic interactions

  • D. Naik
  • A. Trenkwalder
  • C. Kohstall
  • F. M. Spiegelhalder
  • M. Zaccanti
  • G. Hendl
  • F. Schreck
  • R. GrimmEmail author
  • T. M. Hanna
  • P. S. Julienne
Regular Article Degenerate Fermi gases

Abstract

We present a detailed theoretical and experimental study of Feshbach resonances in the 6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which have not been considered before. As an important example, we thoroughly investigate both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our theoretical predictions based on a coupled channels calculation are found in excellent agreement with the experimental results. We also present theoretical results on the molecular state that underlies the 155 G resonance, in particular concerning its lifetime against spontaneous dissociation. We then present a survey of resonances in the system, fully characterizing the corresponding elastic and inelastic scattering properties. This provides the essential information to identify optimum resonances for applications relying on interaction control in this Fermi-Fermi mixture.

Keywords

Couple Channel Feshbach Resonance Centrifugal Barrier Elastic Scattering Cross Section Couple Channel Calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ultra-cold Fermi Gases, edited by M. Inguscio, W. Ketterle, C. Salomon (IOS Press, Amsterdam, 2008), Proceedings of the International School of Physics “Enrico Fermi”, Course CLXIV (Varenna, 2006)Google Scholar
  2. 2.
    S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Taglieber, A.C. Voigt, T. Aoki, T.W. Hänsch, K. Dieckmann, Phys. Rev. Lett. 100, 010401 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    E. Wille et al., Phys. Rev. Lett. 100, 053201 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    A.C. Voigt, M. Taglieber, L. Costa, T. Aoki, W. Wieser, T.W. Hänsch, K. Dieckmann, Phys. Rev. Lett. 102, 020405 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    F.M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, R. Grimm, Phys. Rev. Lett. 103, 223203 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    T.G. Tiecke, M.R. Goosen, A. Ludewig, S.D. Gensemer, S. Kraft, S.J.J.M.F. Kokkelmans, J.T.M. Walraven, Phys. Rev. Lett. 104, 053202 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    F.M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, R. Grimm, Phys. Rev. A 81, 043637 (2010); because of a calibration error the magnetic field values in the vicinity of the 168 G resonance in the aa channel need to be corrected by − 47 mGADSCrossRefGoogle Scholar
  9. 9.
    L. Costa, J. Brachmann, A.C. Voigt, C. Hahn, M. Taglieber, T.W. Hänsch, K. Dieckmann, Phys. Rev. Lett. 105, 123201 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    W.V. Liu, F. Wilczek, Phys. Rev. Lett. 90, 047002 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Forbes, E. Gubankova, W.V. Liu, F. Wilczek, Phys. Rev. Lett. 94, 017001 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    T. Paananen, J.P. Martikainen, P. Törmä, Phys. Rev. A 73, 053606 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Iskin, C.A.R. Sá de Melo, Phys. Rev. Lett. 97, 100404 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Iskin, C.A.R. Sá de Melo, Phys. Rev. Lett. 99, 080403 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    D.S. Petrov, G.E. Astrakharchik, D.J. Papoular, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 99, 130407 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M. Iskin, C.J. Williams, Phys. Rev. A 77, 013605 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Baranov, C. Lobo, G.V. Shlyapnikov, Phys. Rev. A 78, 033620 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    I. Bausmerth, A. Recati, S. Stringari, Phys. Rev. A 79, 043622 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Nishida, Ann. Phys. 324, 897 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    B. Wang, H.D. Chen, S. Das Sarma, Phys. Rev. A 79, 051604(R) (2009)ADSCrossRefGoogle Scholar
  21. 21.
    C. Mora, F. Chevy, Phys. Rev. A 80, 033607 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    A. Gezerlis, S. Gandolfi, K.E. Schmidt, J. Carlson, Phys. Rev. Lett. 103, 060403 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    R.B. Diener, M. Randeria, Phys. Rev. A 81, 033608 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    J.E. Baarsma, K.B. Gubbels, H.T.C. Stoof, Phys. Rev. A 82, 013624 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    D.S. Petrov, C. Salomon, G.V. Shlyapnikov, J. Phys. B At. Mol. Opt. Phys. 38, S645 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Nishida, S. Tan, Phys. Rev. A 79, 060701(R) (2009)ADSCrossRefGoogle Scholar
  27. 27.
    J. Levinsen, T.G. Tiecke, J.T.M. Walraven, D.S. Petrov, Phys. Rev. Lett. 103, 153202 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Nishida, Phys. Rev. A 82, 011605 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    C. Chin, R. Grimm, P.S. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    E. Tiemann, H. Knöckel, P. Kowalczyk, W. Jastrzebski, A. Pashov, H. Salami, A.J. Ross, Phys. Rev. A 79, 042716 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Resonance positions and widths have also been calculated by E. Tiemann using a coupled channels approach similar to our theoretical work, private communicationGoogle Scholar
  32. 32.
    P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 77, 2913 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    J.L. Bohn, P.S. Julienne, Phys. Rev. A 60, 414 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Hutson, New J. Phys. 9, 152 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    J.L. Roberts, N.R. Claussen, J.J.P. Burke, C.H. Greene, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 81, 5109 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    S.T. Thompson, E. Hodby, C.E. Wieman, Phys. Rev. Lett. 94, 020401 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    T. Köhler, E. Tiesinga, P.S. Julienne, Phys. Rev. Lett. 94, 020402 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    F.H. Mies, C.J. Williams, P.S. Julienne, M. Krauss, J. Res. Natl. Inst. Stand. Technol. 101, 521 (1996)CrossRefGoogle Scholar
  39. 39.
    S.D. Gensemer, D.S. Jin, Phys. Rev. Lett. 87, 173201 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    P. Maddaloni, M. Modugno, C. Fort, F. Minardi, M. Inguscio, Phys. Rev. Lett. 85, 2413 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati, A. Simoni, Phys. Rev. Lett. 89, 053202 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    F. Ferlaino, R.J. Brecha, P. Hannaford, F. Riboli, G. Roati, G. Modugno, M. Inguscio, J. Opt. B: Quantum Semiclass. Opt. 5, S3 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    J.P. D’Incao, B.D. Esry, Phys. Rev. Lett. 94, 213201 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    T.M. Hanna, E. Tiesinga, P.S. Julienne, Phys. Rev. A 79, 040701 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    N.F. Mott, H.S.W Massey, The Theory of Atomic Collisions (Oxford, 1965)Google Scholar
  46. 46.
    G.F. Gribakin, V.V. Flambaum, Phys. Rev. A 48, 546 (1993)ADSCrossRefGoogle Scholar
  47. 47.
    K.M. O’Hara, S.L. Hemmer, M.E. Gehm, S.R. Granade, J.E. Thomas, Science 298, 2179 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    T. Bourdel, J. Cubizolles, L. Khaykovich, K.M.F. Magalhães, S.J.J.M.F. Kokkelmans, G.V. Shlyapnikov, C. Salomon, Phys. Rev. Lett. 91, 020402 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    J. Kinast, S.L. Hemmer, M.E. Gehm, A. Turlapov, J.E. Thomas, Phys. Rev. Lett. 92, 150402 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J.H. Denschlag, R. Grimm, Phys. Rev. Lett. 92, 203201 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    A. Altmeyer, S. Riedl, C. Kohstall, M.J. Wright, R. Geursen, M. Bartenstein, C. Chin, J.H. Denschlag, R. Grimm, Phys. Rev. Lett. 98, 040401 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    M.W. Zwierlein, A. Schirotzek, C.H. Schunck, W. Ketterle, Nature 442, 54 (2006)ADSCrossRefGoogle Scholar
  53. 53.
    S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Nature 463, 1057 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J.H. Denschlag, R. Grimm, Science 302, 2101 (2003)ADSCrossRefGoogle Scholar
  55. 55.
    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)ADSCrossRefGoogle Scholar
  56. 56.
    M. Greiner, C.A. Regal, D.S. Jin, Nature 426, 537 (2003)ADSCrossRefGoogle Scholar
  57. 57.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)ADSCrossRefGoogle Scholar
  58. 58.
    F. Ferlaino, S. Knoop, R. Grimm, Cold Molecules: Theory, Experiment, Applications, in Ultracold Feshbach molecules (Taylor & Francis, 2009)Google Scholar
  59. 59.
    K.K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, Science 322, 231 (2008) ADSCrossRefGoogle Scholar
  60. 60.
    F. Lang, K. Winkler, C. Strauss, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 101, 133005 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    J.G. Danzl, M.J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J.M. Hutson, H.C. Nägerl, Nat. Phys. 6, 265 (2010)CrossRefGoogle Scholar
  62. 62.
    D.S. Petrov, Phys. Rev. Lett. 93, 143201 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • D. Naik
    • 1
  • A. Trenkwalder
    • 1
  • C. Kohstall
    • 1
    • 2
  • F. M. Spiegelhalder
    • 1
  • M. Zaccanti
    • 1
    • 3
  • G. Hendl
    • 1
  • F. Schreck
    • 1
  • R. Grimm
    • 1
    • 2
    Email author
  • T. M. Hanna
    • 4
  • P. S. Julienne
    • 4
  1. 1.Institut für Quantenoptik und QuanteninformationÖsterreichische Akademie der WissenschaftenInnsbruckAustria
  2. 2.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria
  3. 3.LENS, Physics DepartmentUniversity of Florence and INO-CNRSesto FiorentinoItaly
  4. 4.Joint Quantum InstituteNIST and University of MarylandGaithersburgUSA

Personalised recommendations