Advertisement

2D Hexagonal SnTe monolayer: a quasi direct band gap semiconductor with strain sensitive electronic and optical properties

  • Negin Fatahi
  • D. M. HoatEmail author
  • Amel Laref
  • Shorin Amirian
  • A. H. Reshak
  • Mosayeb Naseri
Regular Article
  • 1 Downloads

Abstract

The stability and electronic and optical properties of two-dimensional (2D) SnTe monolayer has been systematically studied by using first-principles calculations based on density functional theory. Our computations demonstrate that the predicted 2D SnTe monolayer is a stable quasi-direct semiconductor. Also, analysis of its electronic property shows that the ground state of this monolayer is a quasi-direct semiconductor with a band gap of ~2.00. This band gap can be effectively modulated by external strains. Investigation of optical properties shows that monolayer SnTe exhibits significant absorption and reflectivity in the ultraviolet region of the electromagnetic spectrum.

Graphical abstract

Keywords

Solid State and Materials 

References

  1. 1.
    B. Smiri, I. Fraj, M. Bouzidi, F. Saidi, A. Rebey, H. Maaref, Results Phys. 12, 2175 (2019) ADSCrossRefGoogle Scholar
  2. 2.
    D. Chen, G. Zhang, Z. Cheng, S. Dong, Y. Wang, IUCrJ 6, 189 (2019) CrossRefGoogle Scholar
  3. 3.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 5696 (2004) CrossRefGoogle Scholar
  4. 4.
    A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007) ADSCrossRefGoogle Scholar
  5. 5.
    X. Zhang, Y. Xie, Chem. Soc. Rev. 42, 8187 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    Q. Tang, Z. Zhou, Prog. Mater. Sci. 58, 1244 (2013) CrossRefGoogle Scholar
  7. 7.
    K.J. Koski, Y. Cui, ACS Nano 7, 3739 (2013) CrossRefGoogle Scholar
  8. 8.
    L. Chen, C.C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S. Meng, Y. Yao, K. Wu, Phys. Rev. Lett. 109, 056804 (2012) ADSCrossRefGoogle Scholar
  9. 9.
    A.L. Ivanovskii, A.N. Enyashin, Russ. Chem. Rev. 82, 735 (2013) ADSCrossRefGoogle Scholar
  10. 10.
    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, Adv. Mater. 26, 992 (2014) CrossRefGoogle Scholar
  11. 11.
    P.Z. Tang, P.C. Chen, W.D. Cao, H.Q. Huang, S. Cahangirov, L.D. Xian, Y. Xu, S.C. Zhang, W.H. Duan, A. Rubio, Phys. Rev. B 90, 121408 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    H. Lu, S-D. Li, J. Mater. Chem. C 1, 3677 (2013) CrossRefGoogle Scholar
  15. 15.
    P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, New J. Phys. 16, 095002 (2014) ADSCrossRefGoogle Scholar
  17. 17.
    S. Balendhran, S. Walia, H. Nili, S. Sriram, Small 11, 640 (2014) CrossRefGoogle Scholar
  18. 18.
    S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 55, 1666 (2016) CrossRefGoogle Scholar
  19. 19.
    M. Xie, S. Zhang, B. Cai, Y. Huang, Y. Zou, B. Guo, Y. Gu, H. Zeng, Nano Energy 28, 433 (2016) CrossRefGoogle Scholar
  20. 20.
    X. Yu, S. Zhang, H. Zeng, Q.J. Wang, Nano Energy 25, 34 (2015) CrossRefGoogle Scholar
  21. 21.
    S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Angew. Chem. Int. Ed. 54, 3112 (2015) CrossRefGoogle Scholar
  22. 22.
    J. Ji, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, H. Zeng, Nat. Commun. 7, 13352 (2016) ADSCrossRefGoogle Scholar
  23. 23.
    S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, P. Jena, Proc. Natl. Acad. Sci. 112, 2372 (2015) ADSCrossRefGoogle Scholar
  24. 24.
    A. Lopez-Bezanilla, P.B. Littlewood, J. Phys. Chem. C. 119, 19469 (2015) CrossRefGoogle Scholar
  25. 25.
    S. Zhang, J. Zhou, Q. Wang, P. Jena, J. Phys. Chem. C. 120, 3993 (2016) CrossRefGoogle Scholar
  26. 26.
    F. Li, K. Tu, H. Zhang, Z. Chen, Phys. Chem. Chem. Phys. 17, 24151 (2015) CrossRefGoogle Scholar
  27. 27.
    F. Li, K. Tu, H. Zhang, Z. Chen, Phys. Chem. Chem. Phys. 17, 24151 (2015) CrossRefGoogle Scholar
  28. 28.
    M. Naseri, Appl. Surf. Sci. 423, 566 (2017) ADSCrossRefGoogle Scholar
  29. 29.
    M. Naseri, S. Lin, J. Jalilian, J. Gu, Z. Chen, Front. Phys. 13, 138102 (2018) CrossRefGoogle Scholar
  30. 30.
    M. Naseri, Chem. Phys. Lett. 685, 310 (2017) ADSCrossRefGoogle Scholar
  31. 31.
    H. Morshedi, M. Naseri, M.R. Hantehzadeh, S.M. Elahi, J. Electron. Mater. 47, 2290 (2018) ADSCrossRefGoogle Scholar
  32. 32.
    M. Naseri, Phys. Lett. A 382, 710 (2018) ADSCrossRefGoogle Scholar
  33. 33.
    M. Naseri, Chem. Phys. Lett. 706, 99 (2018) ADSCrossRefGoogle Scholar
  34. 34.
    D. Wang, Y. Wu, Z. Wan, F. Wang, Z. Wang, C. Hu, X. Wang, H. Zhou, RSC Adv. 9, 19495 (2019) CrossRefGoogle Scholar
  35. 35.
    J. Qin, C. Hao, D. Wang, F. Wang, X. Yan, Y. Zhong, Z. Wang, C. Hu, X. Wang, J. Adv. Res. 21, 25 (2020) CrossRefGoogle Scholar
  36. 36.
    P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, K. Schwarz,WIEN2k Users Guide: An Augmented Planewave+Local Orbitals Program for Calculating Crystal Properties, Revised Edition WIEN2k 13.1 (Austria, Vienna University of Technology, 2013) Google Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSGoogle Scholar
  38. 38.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 121, 1187 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys: Condens. Matter 21, 395502 (2009) Google Scholar
  41. 41.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  42. 42.
    F. Birch, J. Geophys. Res. B 91, 4949 (1986) ADSCrossRefGoogle Scholar
  43. 43.
    M. Naseri, J. Jalilian, Mater. Res. Bull. 88, 49 (2017) CrossRefGoogle Scholar
  44. 44.
    M. Naseri, J. Jalilian, F. Parandin, K. Salehi, Phys. Lett. A 382, 2144 (2018) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Negin Fatahi
    • 1
  • D. M. Hoat
    • 2
    • 3
    Email author
  • Amel Laref
    • 4
  • Shorin Amirian
    • 1
  • A. H. Reshak
    • 5
    • 6
    • 7
  • Mosayeb Naseri
    • 1
  1. 1.Department of PhysicsKermanshah Branch, Islamic Azad UniversityKermanshahIran
  2. 2.Computational Laboratory for Advanced Materials and Structures, Advanced Institute of Materials Science, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Applied Sciences, Ton Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Department, College of Science, King Saud UniversityRiyadhSaudi Arabia
  5. 5.Physics Department, College of Science, Basrah UniversityBasrahIraq
  6. 6.Nanotechnology and Catalysis Research Center (NANOCAT), University of MalayaKuala LumpurMalaysia
  7. 7.Department of Instrumentation and Control EngineeringFaculty of Mechanical Engineering, CTU in Prague, Technicka 4PragueCzech Republic

Personalised recommendations