Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermoelectric properties of Wigner crystal in two-dimensional periodic potential

Abstract

We study numerically transport and thermoelectric properties of electrons placed in a two-dimensional (2D) periodic potential. Our results show that the transition from sliding to pinned phase takes place at a certain critical amplitude of lattice potential being similar to the Aubry transition for the one-dimensional Frenkel-Kontorova model. We show that the 2D Aubry pinned phase is characterized by high values of Seebeck coefficient S ≈ 12. At the same time we find that the value of Seebeck coefficient is significantly influenced by the geometry of periodic potential. We discuss possibilities to test the properties of 2D Aubry phase with electrons on a surface of liquid helium.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    E. Wigner, Phys. Rev. 46, 1002 (1934)

  2. 2.

    Y. Monarkha, K. Kono,Two-Dimensional Coulomb liquids and solids (Springer-Verlag, Berlin, 2004)

  3. 3.

    J.S. Meyer, K.A. Matveev, J. Phys. C.: Condens. Matter 21, 023203 (2009)

  4. 4.

    I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007)

  5. 5.

    O.M. Braun, Yu.S. Kivshar,The Frenkel-Kontorova Model: Concepts, Methods, Applications (Springer-Verlag, Berlin, 2004)

  6. 6.

    B.V. Chirikov, Phys. Rep. 52, 263 (1979)

  7. 7.

    A.J. Lichtenberg, M.A. Lieberman,Regular and chaotic dynamics (Springer, Berlin, 1992)

  8. 8.

    J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992)

  9. 9.

    B. Chirikov, D. Shepelyansky, Scholarpedia 3, 3550 (2008)

  10. 10.

    S. Aubry, Physica D 7, 240 (1983)

  11. 11.

    O.V. Zhirov, D.L. Shepelyansky, Europhys. Lett. 103, 68008 (2013)

  12. 12.

    O.V. Zhirov, J. Lages, D.L. Shepelyansky, Eur. Phys. J. D 73, 149 (2019)

  13. 13.

    A.F. Ioffe,Semiconductor thermoelements, and thermoelectric cooling (Infosearch, Ltd, 1957)

  14. 14.

    A.F. Ioffe, L.S. Stil’bans, Rep. Prog. Phys. 22, 167 (1959)

  15. 15.

    A. Majumdar, Science 303, 777 (2004)

  16. 16.

    H.J. Goldsmid,Introduction to thermoelectricity (Springer, Berlin, 2009)

  17. 17.

    N. Li, J. Ren, L. Wang, G. Zhang, P. Hanggi, B. Li, Rev. Mod. Phys. 84, 1045 (2012)

  18. 18.

    B.G. Levi, Phys. Today 67, 14 (2014)

  19. 19.

    J. He, T.M. Tritt, Science 357, eaak9997 (2017)

  20. 20.

    J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8, 471 (2013)

  21. 21.

    D.G.-Rees, S.-S. Yeh, B.-C. Lee, K. Kono, J.-J. Lin, Phys. Rev. B 96, 205438 (2017)

  22. 22.

    J.-Y. Lin, A.V. Smorodin, A.O. Badrutdinov, D. Konstantinov, J. Low Temp. Phys. 195, 289 (2019)

  23. 23.

    T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haffner, New J. Phys. 13, 075012 (2011)

  24. 24.

    A. Bylinskii, D. Gangloff, V. Vuletic, Science 348, 1115 (2015)

  25. 25.

    A. Bylinskii, D. Gangloff, I. Countis, V. Vuletic, Nat. Mater. 11, 717 (2016)

  26. 26.

    J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstaubler, Nat. Commun. 8, 15364 (2017)

  27. 27.

    T. Laupretre, R.B. Linnet, I.D. Leroux, H. Landa, A. Dantan, M. Drewsen, Phys. Rev. A 99, 031401(R) (2019)

  28. 28.

    T. Brazda, A. Silva, N. Manini, A. Vanossi, R. Guerra, E. Tosatti, C. Bechinger, Phys. Rev. X 8, 011050 (2018)

  29. 29.

    M.Y. Zakharov, D. Demidov, D.L. Shepelyansky, Phys. Rev. B 99, 155416 (2019)

  30. 30.

    S. Lepri, R. Livi, A. Politi, Phys. Rep. 377, 1 (2003)

  31. 31.

    K. Ahnert, M. Mulansky, Odeint – solving ordinary differential equations in C++, inIP Conf. Proc. (2011), Vol. 1389, p. 1586

  32. 32.

    D. Demidov, K. Ahnert, K. Rupp, P. Gottschling, SIAM J.Sci. Comput. 35, C453 (2013)

  33. 33.

    D. Demidov, VEXCL, https://github.com/ddemidov/vexcl, Accessed Oct ober (2019)

  34. 34.

    K. Ahnert, D. Demidov, M. Mulansky, Solving ordinarydifferential equations on GPUs, inNumerical Computations with GPUs, edited by V. Kindratenko (Springer, Berlin, 2014), pp. 125–157

  35. 35.

    Olympe, CALMIP https://www.calmip.univ-toulouse.fr/spip.php?article582, Accessed Oct (2019)

  36. 36.

    Yu.P. Monarkham, V.B. Shikin, Sov. Phys. JETP 41, 710 (1976)

  37. 37.

    J. Tempere, S.N. Klimin, I.E. Silvera, J.T. Devreese, Eur. Phys. J. B 32, 329 (2003)

  38. 38.

    K. Moskovtsev, M.I. Dykman, J. Low Temp. Phys. 195, 266 (2019)

  39. 39.

    Y. Machida, X. Lin, W. Kang, K. Izawa, K. Behnia, Phys. Rev. Lett. 116, 087003 (2016)

  40. 40.

    V. Narayan, M. Pepper, J. Griffiths, H. Beere, F. Sfigakis, G. Jones, D. Ritchie, A. Ghosh, Phys. Rev. B 86, 125406 (2012)

  41. 41.

    Q. Du, M. Abeykoon, Y. Liu, G. Kotliar, C. Petrovic, Phys. Rev. Lett. 123, 076602 (2019)

  42. 42.

    N.R. Beysengulov, D.G. Rees, D.G., D.A. Tayurskii, K. Kono, JETP Lett. 104, 323 (2016)

  43. 43.

    A. Benassi, A. Vanossi, E. Tosatti, Nat. Commun. 2, 236 (2011)

Download references

Author information

Correspondence to Dima L. Shepelyansky.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zakharov, M.Y., Demidov, D. & Shepelyansky, D.L. Thermoelectric properties of Wigner crystal in two-dimensional periodic potential. Eur. Phys. J. B 93, 31 (2020). https://doi.org/10.1140/epjb/e2020-100525-8

Download citation

Keywords

  • Statistical and Nonlinear Physics