Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermodynamic uncertainty relations in a linear system

  • 29 Accesses

Abstract

We consider a Brownian particle in harmonic confinement of stiffness k, in one dimension in the underdamped regime. The whole setup is immersed in a heat bath at temperature T. The center of harmonic trap is dragged under any arbitrary protocol. The thermodynamic uncertainty relations for both position of the particle and current at time t are obtained using the second law of thermodynamics as well as the positive semi-definite property of the correlation matrix of work and degrees of freedom of the system for both underdamped and overdamped cases.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    U. Seifert, Eur. Phys. J. B 64, 423 (2008)

  2. 2.

    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)

  3. 3.

    K. Sekimoto, Progr. Theor. Phys. Suppl. 130, 17 (1998)

  4. 4.

    D.J. Evans, E.G.D. Cohen, G.P. Morriss, Phys. Rev. Lett. 71, 2401 (1993)

  5. 5.

    D.J. Evans, D.J. Searles, Phys. Rev. E 50, 1645 (1994)

  6. 6.

    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)

  7. 7.

    G. Gallavotti, E.G.D. Cohen, J. Stat. Phys. 80, 931 (1995)

  8. 8.

    J. Kurchan, J. Phys. A: Math. General 31, 3719 (1998)

  9. 9.

    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)

  10. 10.

    D.J. Searles, D.J. Evans, J. Chem. Phys. 113, 3503 (2000)

  11. 11.

    D.J. Searles, D.J. Evans, Int. J. Thermophys. 22, 123 (2001)

  12. 12.

    C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

  13. 13.

    G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)

  14. 14.

    G.E. Crooks, Phys. Rev. E 60, 2721 (1999)

  15. 15.

    G.E. Crooks, Phys. Rev. E 61, 2361 (2000)

  16. 16.

    A.C. Barato, U. Seifert, Phys. Rev. Lett. 114, 158101 (2015)

  17. 17.

    A.C. Barato, R. Chetrite, A. Faggionato, D. Gabrielli, New J. Phys. 20, 103023 (2018)

  18. 18.

    T. Koyuk, U. Seifert, P. Pietzonka, J. Phys. A: Math. Theor. 52, 02LT02 (2018)

  19. 19.

    A.C. Barato, U. Seifert, J. Phys. Chem. B 119, 6555 (2015)

  20. 20.

    A.C. Barato, U. Seifert, Phys. Rev. X 6, 041053 (2016)

  21. 21.

    J.M. Horowitz, T.R. Gingrich, Phys. Rev. E 96, 020103 (2017)

  22. 22.

    C. Maes, Phys. Rev. Lett. 119, 160601 (2017)

  23. 23.

    S.K. Manikandan, S. Krishnamurthy, J. Phys. A: Math. Theor. 51, 11LT01 (2018)

  24. 24.

    P. Pietzonka, F. Ritort, U. Seifert, Phys. Rev. E 96, 012101 (2017)

  25. 25.

    S. Pigolotti, I. Neri, E. Roldán, F. Jülicher, Phys. Rev. Lett. 119, 140604 (2017)

  26. 26.

    J.P. Garrahan, Phys. Rev. E 95, 032134 (2017)

  27. 27.

    A.C. Barato, U. Seifert, Phys. Rev. E 92, 032127 (2015)

  28. 28.

    T.R. Gingrich, J.M. Horowitz, N. Perunov, J.L. England, Phys. Rev. Lett. 116, 120601 (2016)

  29. 29.

    H. Touchette, Phys. Rep. 478, 1 (2009)

  30. 30.

    M. Polettini, A. Lazarescu, M. Esposito, Phys. Rev. E 94, 052104 (2016)

  31. 31.

    P. Pietzonka, A.C. Barato, U. Seifert, Phys. Rev. E 93, 052145 (2016)

  32. 32.

    N. Shiraishi, Finite-time thermodynamic uncertainty relation do not hold for discrete-time Markov process, https://arXiv:1706.00892 (2017)

  33. 33.

    K. Proesmans, C.V. den Broeck, Europhys. Lett. 119, 20001 (2017)

  34. 34.

    D. Chiuchiù, S. Pigolotti, Phys. Rev. E 97, 032109 (2018)

  35. 35.

    I.D. Terlizzi, M. Baiesi, J. Phys. A: Math. Theor. 52, 02LT03 (2018)

  36. 36.

    A. Dechant, J. Phys. A: Math. Theor. 52, 035001 (2018)

  37. 37.

    C. Hyeon, W. Hwang, Phys. Rev. E 96, 012156 (2017)

  38. 38.

    A. Dechant, S. Ichi Sasa, J. Stat. Mech. Theory Exp. 2018, 063209 (2018)

  39. 39.

    W. Hwang, C. Hyeon, J. Phys. Chem. Lett. 9, 513 (2018)

  40. 40.

    R. Harris, M. Shreshtha, Europhys. Lett. 126, 40007 (2019)

  41. 41.

    R. Marsland III, W. Cui, J.M. Horowitz, J. R. Soc. Interface 16, 20190098 (2019)

  42. 42.

    S. Lee, C. Hyeon, J. Jo, Phys. Rev. E 98, 032119 (2018)

  43. 43.

    H.-M. Chun, L.P. Fischer, U. Seifert, Phys. Rev. E 99, 042128 (2019)

  44. 44.

    K. Macieszczak, K. Brandner, J.P. Garrahan, Phys. Rev. Lett. 121, 130601 (2018)

  45. 45.

    T. Van Vu, Y. Hasegawa, J. Phys. A: Math. Theor. 53, 075001 (2020)

  46. 46.

    Y. Hasegawa, T. Van Vu, Phys. Rev. E 99, 062126 (2019)

  47. 47.

    T. Van Vu, Y. Hasegawa, Phys. Rev. E 100, 032130 (2019)

  48. 48.

    T. Van Vu, Y. Hasegawa, Phys. Rev. E 100, 012134 (2019)

  49. 49.

    A. Barato, R. Chetrite, A. Faggionato, D. Gabrielli, J. Stat. Mech.: Theory Exp. 2019, 084017 (2019)

  50. 50.

    Y. Hasegawa, T. Van Vu, Phys. Rev. Lett. 123, 110602 (2019)

  51. 51.

    P.P. Potts, P. Samuelsson, Phys. Rev. E 100, 052137 (2019)

  52. 52.

    K. Proesmans, J.M. Horowitz, J. Stat. Mech.: Theory Exp. 2019, 054005 (2019)

  53. 53.

    U. Seifert, Phys. Rev. Lett. 95, 040602 (2005)

  54. 54.

    G.M. Wang, J.C. Reid, D.M. Carberry, D.R.M. Williams, E.M. Sevick, D.J. Evans, Phys. Rev. E 71, 046142 (2005)

  55. 55.

    G.M. Wang, E.M. Sevick, E. Mittag, D.J. Searles, D.J. Evans, Phys. Rev. Lett. 89, 050601 (2002)

Download references

Author information

Correspondence to Deepak Gupta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, D., Maritan, A. Thermodynamic uncertainty relations in a linear system. Eur. Phys. J. B 93, 28 (2020). https://doi.org/10.1140/epjb/e2020-10019-4

Download citation

Keywords

  • Statistical and Nonlinear Physics